Ask Our Doctors

Dear Patients,

I created this forum to welcome any questions you have on the topic of infertility, IVF, conception, testing, evaluation, or any related topics. I do my best to answer all questions in less than 24 hours. I know your question is important and, in many cases, I will answer within just a few hours. Thank you for taking the time to trust me with your concern.

– Geoffrey Sher, MD

Fill in the following information and we’ll get back to you.

Name: Shelby N

I had my first blood test done my levels are around 57 and they couldnt see anything on an ultrasound they had me wait 4 days to do repeat testing and my numbers are only at 71

Answer:

This is a slow rise and the likelihood is that the pregnancy will not survive! However, repeat th hCG test in 2 days to see if it doubles as it should.

So sorry!

 

Going through IVF is a major investment, emotionally, physically, and financially, for every patient or couple. One of the most crucial moments is receiving the result of the blood test for human chorionic gonadotropin (hCG) pregnancy. It’s a big deal! The days after the embryo transfer, waiting for this result, can be extremely stressful. That’s why it’s crucial for the IVF doctor and staff to handle this information with care and professionalism. They should be accessible to the patient/couple and provide results promptly and sensitively.

Testing urine or blood to check for human chorionic gonadotropin (hCG) is the best way to confirm pregnancy. Urine tests are cheaper and more commonly used. They are also more convenient because they can be done anywhere. However, blood tests are more reliable and sensitive than urine tests. They can detect pregnancy earlier and at lower hCG levels. Blood tests are also more accurate and can track changes in hCG levels over time. Urine tests can detect hCG when blood levels are above 20IU, which is about 16-18 days after ovulation or 2-3 days after a missed period. Blood tests can measure any concentration of hCG about 12-13 days after ovulation.

Detecting hCG in the blood early on and tracking its increase is especially useful for women undergoing fertility treatments like controlled ovarian stimulation or in vitro fertilization. The sooner hCG is detected and measured, the more information can be gathered about the success of implantation and the health of the developing embryo.

Typically, two beta hCG blood tests are done, spaced 2-4 days apart. It’s best to wait for the results of the second test before reporting on the pregnancy. This is because an initial result can change, even from equivocal or negative to positive. Sometimes a normal embryo takes longer to implant, and the hCG level can be initially low or undetectable. Regardless of the initial level, the test should be repeated after two days to check for a significant rise in hCG. A significant rise usually indicates that an embryo is implanting, which suggests a possible pregnancy. Waiting for the second test result helps avoid conveying false hope or disappointment.


It’s important to note that beta hCG levels don’t double every two days throughout pregnancy. Once the levels rise above 4,000U, they tend to increase more slowly. Except in specific cases like IVF using an egg donor or transfer of genetically tested embryos, the birth rate following IVF in younger women is around 40% per embryo transfer. Patients need to have realistic expectations and should be informed about how and when they will receive the news, as well as counseling in case of a negative outcome.

When an embryo starts to implant, it releases the pregnancy hormone hCG into the woman’s bloodstream. Around 12 days after egg retrieval, 9 days after a day 3 embryo transfer, or 7 days after a blastocyst transfer, a woman should have a quantitative beta hCG blood pregnancy test performed. By that time, most of the hCG injected to prepare the eggs for retrieval should have cleared from the bloodstream. So, if the test detects more than 10 IU of hCG per ml of blood, it indicates that the embryo has attempted to implant. In third-party IVF (e.g., ovum donation, gestational surrogacy, embryo adoption, or frozen embryo transfers), no hCG trigger is administered, so any amount of hCG detected in the blood is considered significant.

Sometimes, there is a slow initial rise in hCG between the first and second tests (failure to double every 48 hours). In such cases, a third and sometimes a fourth hCG test should be done at two-day intervals. A failure to double on the third and/or fourth test is a poor sign and could indicate a failed or dysfunctional implantation. In some cases, a progressively slow rising hCG level might indicate an ectopic pregnancy, which requires additional testing and follow-up.

In certain situations, the first beta hCG level starts high, drops with the second test, and then starts doubling again. This could suggest that initially, multiple embryos started to implant but only one survived to continue a healthy implantation.

It’s customary for the IVF clinic staff to inform the patient/couple and the referring physician about the hCG pregnancy test results. Often, the IVF physician or nurse-coordinator coordinates with the referring physician to arrange all necessary pregnancy tests. If the patient/couple prefer to make their own arrangements, the program should provide detailed instructions.

In some cases, when the two blood pregnancy tests show that one or more embryos are implanting, certain programs recommend daily injections of progesterone or the use of vaginal hormone suppositories for several weeks to support the implantation process. Others give hCG injections three times a week until the pregnancy can be confirmed by ultrasound examination. Some IVF programs don’t prescribe any hormones after the embryo transfer.

Patients with appropriate doubling of hCG levels within two days after frozen embryo transfer (FET) or third-party IVF procedures such as surrogacy or egg donation may receive estradiol and progesterone injections, often along with vaginal hormone suppositories, for 10 weeks after the implantation is diagnosed by blood pregnancy testing.

A positive Beta hCG blood pregnancy test indicates the possibility of conception, but ultrasound confirmation is needed to confirm the pregnancy. Until then, it is referred to as a “chemical pregnancy.” Only when ultrasound examination confirms the presence of a gestational sac, clinical examination establishes a viable pregnancy, or after abortion when products of conception are detected, is it called a clinical intrauterine pregnancy.

A significantly elevated  hCG blood level without concomitant detection of an gestational sac inside the uterus by ultrasound after 5 weeks gestation raises the suspicion of an ectopic (tubal) pregnancy.

The risk of miscarriage gradually decreases once a viable clinical pregnancy is diagnosed (a conceptus with a regular heartbeat of 110-180 beats per minute). From this point onward, the risk of miscarriage is usually 10- 15% for women under 40 years old and around 35% for women in their early forties.

Dealing with successful IVF cases is relatively easy as everyone feels happy and validated. The real challenge lies in handling unsuccessful cases. Setting rational expectations from the beginning is crucial. In some cases (fortunately rare), emotional pressure may overwhelm the patient/couple, leading to a need for counseling or psychiatric therapy. I always advise my patients that receiving optimal care doesn’t always guarantee the desired outcome. There are many variables beyond our control, especially the unpredictable nature of fate. With around 36 years of experience in this field, I strongly believe that when it comes to IVF, the saying “man proposes while God disposes” always holds.

There are a few important things to consider when interpreting blood hCG levels. Levels can vary widely, ranging from 5mIU/ml to over 400mIU/ml, 10 days after ovulation or egg retrieval. The levels double every 48-72 hours until the 6th week of pregnancy, after which the doubling rate slows down to about 96 hours. By the end of the 1st trimester, hCG levels reach 13,000-290,000 IU and then slowly decline to around 26,000-300,000 IU at full term. Here are the average hCG levels during the first trimester:

  • 3 weeks after the last menstrual period (LMP): 5-50 IU
  • 4 weeks LMP: 5-426 IU
  • 5 weeks LMP: 18-7,340 IU
  • 6 weeks LMP: 1,080-56,500 IU
  • 7-8 weeks LMP: 7,650-229,000 IU
  • 9-12 weeks LMP: 25,700-288,000 IU

Most doctors wait until around the 7th week to perform an ultrasound to confirm pregnancy. By that time, the heartbeat should be clearly visible, providing a more reliable assessment of the pregnancy’s viability.

In some cases, blood hCG levels can be unusually high or increase faster than normal. This could indicate multiple pregnancies or a molar pregnancy. Rarely, conditions unrelated to pregnancy, such as certain ovarian tumors or cancers, can cause detectable hCG levels in both blood and urine.

 

To summarize, testing urine or blood for hCG is the most reliable way to confirm pregnancy. Urine tests are more common and convenient, while blood tests are more accurate and can detect pregnancy earlier. Tracking hCG levels in the blood is especially important for women undergoing fertility treatments. It’s essential to wait for the results of a second blood test before confirming pregnancy to avoid false hope or disappointment. Interpreting hCG levels requires considering various factors, and doctors usually perform an ultrasound around the 7th week for a more accurate assessment. Unusually high hCG levels may indicate multiple pregnancies or other conditions unrelated to pregnancy. Providing sensitive and timely communication of results is crucial for IVF clinics to support patients through the emotional journey.

Geoff Sher

______________________________________________________________________

PLEASE SHARE THIS WITH OTHERS AND HELP SPREAD THE WORD!!

 

Herewith are  online links to 2  E-books recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

  1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) ; https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

 

  1. Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link ;https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

 

I invite you to visit my very recently launched “Podcast”,  “HAVE A BABY” on RUMBLE;   https://rumble.com/c/c-3304480

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com\

 

Name: Vessie V

1.3, 2.1cm Trigger was 10000 IU Gonasi HP (hCG) and on day 11. Only 1 mature egg was retrieved, and fertilised using ICSI. My day 3 update is a slow growing embryo of 3 cells with some fragmentation. I don’t know whether I should be proceeding with the second stimulation…. Can you please help me with advice on the correct protocol in my situation. PAST IVF HISTORY December 2022/January 2023: Dual Stimulation Protocol 3-4 follicles in each ovary at start of priming Priming: Androgel 1% (started on Day 3 of cycle and stopped on Day 2 of next cycle just before stimulation) At start of First stimulation (Day 3): 5 antral follicles in Right ovary and 3 antral follicles in Left ovary Medications: Pergoveris: 350 IU Clomiphene: 100mg Cetrotide: 0.25mg Day 8 (First stimulation cycle): 3 follicles developing First stimulation cycle: 2 eggs retrieved and 2 eggs fertilized with 1 embryo to blastocyst (biopsied and frozen); PGT-A indicates aneuploidy At start of Second Stimulation: 2 follicles in Right ovary and 2 follicles in Left ovary Day 8 (Second stimulation cycle): possibly 3 follicles developing Second stimulation cycle: 2 eggs retrieved and 2 eggs fertilized with 1 embryo to blastocyst (biopsied and frozen); PGT-A indicates aneuploidy June 2023: Dual stimulation protocol Found out that my partner has a high degree of DNA fragmentation in his sperm just after starting ovarian stimulation. Priming: Androgel 1% (started on Day 3 of cycle and stopped on Day 2 of next cycle just before stimulation) Estrace (twice per day, started 7 days after positive ovulation test) At start of First stimulation (Day 2): 4 follicles in the Right ovary and 3 follicles in the Left ovary Medications: Gonal-F: 300IU Menopur: 150 IU Clomiphene: 100mg Cetrotide: 0.25mg Day 9: 5 follicles in Right ovary and 5 follicles in Left ovary, possibly 2-3 developing First stimulation cycle: 1 egg retrieved and abnormally fertilized At start of Second stimulation: 2-3 follicles in Right ovary and 1 follicle in Left ovary Day 8: 1 follicle developing No eggs retrieved.

Answer:

  • Empowering Choices: Embryo Banking vs. Egg Banking for Fertility Preservation

It’s crucial for women to make informed decisions about preserving their fertility. Delaying trying to conceive, relying on egg freezing, or assuming the biological clock can be paused are misconceptions. As women age, egg quality declines, affecting the chance of a successful, healthy pregnancy.

Let’s break down the key points:

  1. Age and Egg Quality: As women progress past their mid-thirties, the quality of their eggs declines rapidly. This impacts conception rates, leading to higher miscarriage and chromosomal abnormalities like Down syndrome.
  2. Comparing Chances:
    • At 30, the natural conception rate is around 15-20%, with a 10-15% miscarriage rate and a 1:1000 chance of Down syndrome.
    • At 45, natural conception drops to 1-2%, with a 50-60% miscarriage rate and a 1:40 chance of Down syndrome.
  1. IVF and Age:
    • IVF success rates are better at younger ages, with a 50-60% conception rate for 30-year-olds and a 3-5% chance for 45-year-olds.
    • However, IVF doesn’t eliminate the increased risk of miscarriage or chromosomal abnormalities as women age.
  1. IVF Realities:
    • The success of IVF dramatically decreases with age, making informed decisions crucial.

Preimplantation Genetic Screening (PGS)/Preimplantation Genetic Testing for aneuploidy (PGT-A) is a breakthrough in fertility treatment, aiding the selection of the most viable embryos for a successful pregnancy. By analyzing all chromosomes, it significantly boosts the success rates of IVF. PGS/PGT-A not only increases the chance of a healthy baby per embryo transfer but also reduces the risks of miscarriages and chromosomal birth defects, regardless of the woman’s age.

Who Benefits from PGS/PGT-A?

PGS/PGT-A) has revolutionized embryo evaluation, especially for those facing unexplained IVF failure, infertility, recurrent pregnancy loss (RPL), and older women with diminished ovarian reserve (DOR).

Empowering Older Women: Embryo Banking

PGS/PGT-A is especially beneficial for women over 39 years of age and those with DOR, as it allows the storage (banking) of healthy embryos over multiple cycles, countering the ticking biological clock.. Selective banking of PGS-normal embryos over multiple cycles is a game-changer. It minimizes the impact of age on egg quality, giving these women a chance to make the most of their remaining time to conceive a healthy baby.

Egg Freezing: Factors to Consider

Eggs are vulnerable cells, and freezing a single egg is less effective than freezing a multi-cellular embryo. Additionally, a significant portion of eggs (especially in older women) have chromosomal abnormalities. This makes egg freezing less efficient and  embryo freezing, far more successful, especially when selectively freezing PGS/PGT-A-normal blastocysts.

Choosing the Right Path

Importantly, considering the decline in reproductive potential with age, it’s essential for women and couples to explore their fertility options before the age of 35. An aggressive approach, like moving to assisted reproduction and IVF can significantly improve outcomes. For younger women (<35y) who have normal egg reserves, especially those who are not married,  have not as yet settled on la “permanent” male partner or a do not feel secure with their existing male partner fathering a child with them might preferentially choose egg freezing . Conversely,  women who are comfortable with a designated male partner, older women and those who have DOR might rather select embryo banking.

In the choice between egg and embryo freezing, caution is advised. Current methods for egg selection lack chromosomal analysis. Conversely the performance of PGSGT-A allows for identification of the healthiest embryos for subsequent FET..

Either way, “timing” is a very important consideration.

By understanding these options, you can make an informed decision to maximize your chances of a healthy, happy family. Remember, knowledge is power in the journey to parenthood.

PLEASE SHARE THIS WITH OTHERS AND HELP SPREAD THE WORD!!

 

Herewith are  online links to 2  E-books recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

  1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) ; https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

 

  1. Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link ;https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

 

I invite you to visit my very recently launched “Podcast”,  “HAVE A BABY” on RUMBLE;   https://rumble.com/c/c-3304480

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com\

 

Name: private

I’m 40 about to turn 41 with what’s been described as severe DOR, amh is dropping fast. 2 years ago it was .22, last april .08 and this past test (after my stimulation complications) it’s now .03. Last year I completed 7 retrievals back to back using mild IVF. Retrieved around 1-4 per round, but only 1 made it to blast and then was abnormal. I switched doctors and they insisted on traditional IVF. I completed 2 rounds with the same outcome and by the 3rd, first I had break through follicles for 3 cycles and then finally started stimulation and my estrogen dropped, follicles disappeared and I didn’t get my period for 2 months. Then tried an IUI with clomid and it was unsuccessful, but I had 2 follicles with the stim. Tried a second IUI and same thing happened. She pushed 3 rounds of clomid, before canceling bc Estrogen dropped and follicles disappeared again and now a month and a half later waiting for my period. My dr said I cannot be stimulated and her hands are tied. My question is this. Before I move onto a donor egg, I feel like with a different mild stim protocol like before, I must be able to get something and/or finally do a fresh transfer. I found a new dr and they want to do natural IVF, although I’m nervous about having the same stim reaction, I’m equally nervous about no stim at all and the cost and time of these cycles for only 1 potential follicle in the end. Please advise on what type of protocol you would suggest (I know a lot of drs would say stop) if I was insisting on 1 or 2 more rounds of IVF before giving up. Thank you!

Answer:

Understanding the impact of age and ovarian reserve on the success of in vitro fertilization (IVF) is crucial when it comes to reproductive health. This article aims to simplify and clarify these concepts, emphasizing their significance in the selection of ovarian stimulation protocols for IVF. By providing you with this information, we hope to shed light on the importance of considering these factors and making informed decisions regarding fertility treatments.

  1. The Role of Eggs in Chromosomal Integrity: In the process of creating a healthy embryo, it is primarily the egg that determines the chromosomal integrity, which is crucial for the embryo’s competency. A competent egg possesses a normal karyotype, increasing the chances of developing into a healthy baby. It’s important to note that not all eggs are competent, and the incidence of irregular chromosome numbers (aneuploidy) increases with age.
  2. Meiosis and Fertilization: Following the initiation of the LH surge or the hCG trigger shot, the egg undergoes a process called meiosis, halving its chromosomes to 23. During this process, a structure called the polar body is expelled from the egg, while the remaining chromosomes are retained. The mature sperm, also undergoing meiosis, contributes 23 chromosomes. Fertilization occurs when these chromosomes combine, resulting in a euploid embryo with 46 chromosomes. Only euploid embryos are competent and capable of developing into healthy babies.
  3. The Significance of Embryo Ploidy: Embryo ploidy, referring to the numerical chromosomal integrity, is a critical factor in determining embryo competency. Aneuploid embryos, which have an irregular number of chromosomes, are often incompetent and unable to propagate healthy pregnancies. Failed nidation, miscarriages, and chromosomal birth defects can be linked to embryo ploidy issues. Both egg and sperm aneuploidy can contribute, but egg aneuploidy is usually the primary cause.
  4. Embryo Development and Competency: Embryos that develop too slowly or too quickly, have abnormal cell counts, contain debris or fragments, or fail to reach the blastocyst stage are often aneuploid and incompetent. Monitoring these developmental aspects can provide valuable insights into embryo competency.
  5. Diminished Ovarian Reserve (DOR): As women advance in their reproductive age, the number of remaining eggs in the ovaries decreases. Diminished ovarian reserve (DOR) occurs when the egg count falls below a certain threshold, making it more challenging to respond to fertility drugs effectively. This condition is often indicated by specific hormone levels, such as elevated FSH and decreased AMH. DOR can affect women over 40, but it can also occur in younger

 

Why IVF should be regarded as treatment of choice for older women an those who have diminished ovarian reserve ( DOR):

Understanding the following factors will go a long way in helping you to make an informed decision and thereby improve the chances of a successful IVF outcome.

  1. Age and Ovarian Reserve: Chronological age plays a vital role in determining the quality of eggs and embryos. As women age, there is an increased risk of aneuploidy (abnormal chromosome numbers) in eggs and embryos, leading to reduced competency. Additionally, women with declining ovarian reserve (DOR), regardless of their age, are more likely to have aneuploid eggs/embryos. Therefore, it is crucial to address age-related factors and ovarian reserve to enhance IVF success.
  2. Excessive Luteinizing Hormone (LH) and Testosterone Effects: In women with DOR, their ovaries and developing eggs are susceptible to the adverse effects of excessive LH, which stimulates the overproduction of male hormones like testosterone. While some testosterone promotes healthy follicle growth and egg development, an excess of testosterone has a negative impact. Therefore, in older women or those with DOR, ovarian stimulation protocols that down-regulate LH activity before starting gonadotropins are necessary to improve egg/embryo quality and IVF outcomes.
  3. Individualized Ovarian Stimulation Protocols: Although age is a significant factor in aneuploidy, it is possible to prevent further decline in egg/embryo competency by tailoring ovarian stimulation protocols. Here are my preferred protocols for women with relatively normal ovarian reserve:
  1. Conventional Long Pituitary Down Regulation Protocol:
  • Begin birth control pills (BCP) early in the cycle for at least 10 days.
  • Three days before stopping BCP, overlap with an agonist like Lupron for three days.
  • Continue daily Lupron until menstruation begins.
  • Conduct ultrasound and blood estradiol measurements to assess ovarian status.
  • Administer FSH-dominant gonadotropin along with Menopur for stimulation.
  • Monitor follicle development through ultrasound and blood estradiol measurements.
  • Trigger egg maturation using hCG injection, followed by egg retrieval.
  1. Agonist/Antagonist Conversion Protocol (A/ACP):
  • Similar to the conventional long down regulation protocol but replace the agonist with a GnRH antagonist from the onset of post-BCP menstruation until the trigger day.
  • Consider adding supplementary human growth hormone (HGH) for women with DOR.
  • Consider using “priming” with estrogen prior to gonadotropin administration
  1. Protocols to Avoid for Older Women or Those with DOR: Certain ovarian stimulation protocols may not be suitable for older women or those with declining ovarian reserve:
  • Microdose agonist “flare” protocols
  • High dosages of LH-containing fertility drugs such as Menopur
  • Testosterone-based supplementation
  • DHEA supplementation
  • Clomiphene citrate or Letrozole
  • Low-dosage hCG triggering or agonist triggering for women with DOR

 Preimplantation Genetic Screening/Testing(PGS/T): PGS/T is a valuable tool for identifying chromosomal abnormalities in eggs and embryos. By selecting the most competent (euploid) embryos, PGS/T significantly improves the success of IVF, especially in older women or those with DOR.

Understanding the impact of advancing age and declining ovarian reserve on IVF outcomes is essential when making decisions about fertility treatments. Age-related factors can affect egg quality and increase the likelihood of aneuploid embryos with resultant IVF failure. Diminished ovarian reserve (DOR) further complicates the process. By considering these factors, you can make informed choices and work closely with fertility specialists to optimize your chances of success. Remember, knowledge is power, and being aware of these aspects empowers you to take control of your reproductive journey.

_________________________________________________________________________________________________

PLEASE SHARE THIS WITH OTHERS AND HELP SPREAD THE WORD!!

 

Herewith are  online links to 2  E-books recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

  1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) ; https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

 

  1. Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link ;https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

 

I invite you to visit my very recently launched “Podcast”,  “HAVE A BABY” on RUMBLE;   https://rumble.com/c/c-3304480

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com\

 

Name: private

What is the recommended transfer protocol for someone with high TNF Alpha. I was given prednisone but it did not work. Prior to transfer it was 45.0 and I was prescribed 25mg prednisone for a month but it increased to 51.7 instead and that was only found out after transferring a genetically tested embryo that failed to implant.

Answer:

Elevated TNF alpha indicates activated natural killer cell activity.

  • A RATIONAL BASIS FOR MANAGEMENT OF IMMUNOLOGIC CAUSES OF EMBRYO IMPLANTATION DYSFUNCTION

In the world of assisted reproduction, when IVF fails repeatedly or without explanation, it’s often assumed that poor embryo quality is the main culprit. However, this view oversimplifies the situation. The process of embryo implantation, which begins about six or seven days after fertilization, involves a complex interaction between embryonic cells and the lining of the uterus. These specialized cells, called trophoblasts, eventually become the placenta. When the trophoblasts meet the uterine lining, they engage in a communication process with immune cells through hormone-like substances called cytokines. This interaction plays a critical role in supporting the successful growth of the embryo. From the earliest stages, the trophoblasts establish the foundation for the exchange of nutrients, hormones, and oxygen between the mother and the baby. The process of implantation not only ensures the survival of early pregnancy but also contributes to the quality of life after birth.

There are numerous uterine factors that can impede embryo implantation potential. However, the vast majority relate to the following three (3) factors:

  1. Thin uterine lining (endometrium) . A lining that is <8mm in thickness at the time of ovulation, and/ or the administration of progesterone
  2. Irregularity the inner surface of the uterine cavity (caused by protruding sub-mucous fibroids, scar  tissue or polyps )
  • Immunologic factors that compromise implantation

Of these 3 factors, the one most commonly overlooked (largely because of the highly complex nature of the problem) is immunologic implantation dysfunction (IID), a common cause of “unexplained (often repeated) IVF failure and recurrent pregnancy loss. This article will focus on the one that most commonly is overlooked ….namely, immunologic implantation dysfunction (IID.

There is a growing recognition that problems with the immune function in the uterus can lead to embryo implantation dysfunction. The failure of proper immunologic interaction during implantation has been implicated as a cause of recurrent miscarriage, late pregnancy fetal loss, IVF failure, and infertility. Some immunologic factors that may contribute to these issues include antiphospholipid antibodies (APA), antithyroid antibodies (ATA) , and activated natural killer cells (NKa).

  • Activated natural Killer Cells (NKa):

During ovulation and early pregnancy, the uterine lining is frequented by NK cells and T-cells, which together make up more than 80% of the immune cells in the uterine lining. These cells travel from the bone marrow to the endometrium where they proliferate under hormonal regulation. When exposed to progesterone, they produce TH-1 and TH-2 cytokines. TH-2 cytokines help the trophoblast (embryo’s “root system”) to penetrate the uterine lining, while TH-1 cytokines induce apoptosis (cell suicide), limiting placental development to the inner part of the uterus. The balance between TH1 and TH-2 cytokines is crucial for optimal placental development. NK cells and T-cells contribute to cytokine production. Excessive TH-1 cytokine production is harmful to the trophoblast and endometrial cells, leading to programmed cell death and ultimately to implantation failure.

Functional NK cells reach their highest concentration in the endometrium around 6-7 days after ovulation or exposure to progesterone, which coincides with the time of embryo implantation.

It’s important to note that measuring the concentration of blood NK cells doesn’t reflect NK cell activation (NKa). The activation of NK cells is what matters. In certain conditions like endometriosis, the blood concentration of NK cells may be below normal, but NK cell activation is significantly increased.

There are several laboratory methods to assess NK cell activation (cytotoxicity), including immunohistochemical assessment of uterine NK cells and measuring TH-1 cytokines in the uterus or blood. However, the K-562 target cell blood test remains the gold standard. In this test, NK cells isolated from a woman’s blood are incubated with specific “target cells,” and the percentage of killed target cells is quantified. More than 12% killing indicates a level of NK cell activation that usually requires treatment. Currently, there are only a few Reproductive Immunology Reference Laboratories in the USA capable of reliably performing the K-562 target cell test.

There is a common misconception that adding IL (intralipid) or IVIg to NK cells can immediately downregulate NK cell activity. However, IL and IVIg cannot significantly suppress already activated NK cells. They are believed to work by regulating NK cell progenitors, which then produce downregulated NK cells. To assess the therapeutic effect, IL/IVIg infusion should be done about 14 days before embryos are transferred to the uterus to ensure a sufficient number of normal functional NK cells are present at the implantation site during embryo transfer. Failure to recognize this reality has led to the erroneous demand from IVF doctors for Reproductive Immunology Reference Laboratories to report on NK cell activity before and immediately after exposure to IVIg or IL at different concentrations. However, since already activated NK cells cannot be deactivated in the laboratory, assessing NKa suppression in this way has little clinical benefit. Even if blood is drawn 10-14 days after IL/IVIg treatment, it would take another 10-14 days to receive the results, which would be too late to be practically advantageous.

  • Antiphospholipid Antibodies:

Many women who struggle with IVF failure or recurrent pregnancy loss, as well as those with a personal or family history of autoimmune diseases like lupus erythematosus, rheumatoid arthritis, scleroderma, and dermatomyositis, often test positive for antiphospholipid antibodies (APAs). Over 30 years ago, I proposed a treatment for women with positive APA tests. This involved using a low dose of heparin to improve the success of IVF implantation and increase birth rates. Research indicated that heparin could prevent APAs from affecting the embryo’s “root system” ( the trophoblast), thus enhancing implantation. We later discovered that this therapy only benefits women whose APAs target specific phospholipids (phosphatidylethanolamine and phosphatidylserine). Nowadays, longer-acting low molecular weight heparinoids like Lovenox and Clexane have replaced heparin.

  • Antithyroid Antibodies ( thyroid peroxidase -TPO and antithyroglobulin antibodies (TGa)

Between 2% and 5% of women of the childbearing age have reduced thyroid hormone activity (hypothyroidism). Women with hypothyroidism often manifest with reproductive failure i.e., infertility, unexplained (often repeated) IVF failure, or recurrent pregnancy loss (RPL). The condition is 5-10 times more common in women than in men. In most cases hypothyroidism is caused by damage to the thyroid gland resulting from thyroid autoimmunity (Hashimoto’s disease) caused by damage done to the thyroid gland by antithyroglobulin and antimicrosomal auto-antibodies. The increased prevalence of hypothyroidism and thyroid autoimmunity (TAI) in women is likely the result of a combination of genetic factors, estrogen-related effects, and chromosome X abnormalities. This having been said, there is significantly increased incidence of thyroid antibodies in non-pregnant women with a history of infertility and recurrent pregnancy loss and thyroid antibodies can be present asymptomatically in women without them manifesting with overt clinical or endocrinologic evidence of thyroid disease. In addition, these antibodies may persist in women who have suffered from hyper- or hypothyroidism even after normalization of their thyroid function by appropriate pharmacological treatment. The manifestations of reproductive dysfunction thus seem to be linked more to the presence of thyroid autoimmunity (TAI) than to clinical existence of hypothyroidism and treatment of the latter does not routinely result in a subsequent improvement in reproductive performance. It follows that if antithyroid autoantibodies are associated with reproductive dysfunction they may serve as useful markers for predicting poor outcome in patients undergoing assisted reproductive technologies. Some years back, I reported on the fact that 47% of women who harbor thyroid autoantibodies, regardless of the absence or presence of clinical hypothyroidism, have activated uterine natural killer cells (NKa) cells and cytotoxic lymphocytes (CTL) and that such women often present with reproductive dysfunction. We demonstrated that appropriate immunotherapy with IVIG or intralipid (IL) and steroids subsequently often results in a significant improvement in reproductive performance in such cases.


Almost 50% of women with antithyroid antibodies do not have activated cytotoxic T lymphocytes (CTL) or natural killer cells (NK cells). This suggests that the antibodies themselves may not be the direct cause of reproductive dysfunction. Instead, the activation of CTL and NK cells, which occurs in about half of the cases with thyroid autoimmunity (TAI), is likely an accompanying phenomenon that damages the early “root system” (trophoblast) of the embryo during implantation.

Treating women who have both antithyroid antibodies and activated NK cells/CTL with intralipid (IL) and steroids improves their chances of successful reproduction. However, women with antithyroid antibodies who do not have activated NK cells/CTL do not require this treatment.

  • Treatment Options for Immunologic Implantation Dysfunction (IID):
  1. Intralipid (IL) Therapy: IL is a mixture of soybean lipid droplets in water, primarily used for providing nutrition. When administered intravenously, IL supplies essential fatty acids that can activate certain receptors in NK cells, reducing their cytotoxic activity and enhancing implantation. IL, combined with corticosteroids, suppresses the overproduction of pro-inflammatory cytokines by NK cells, improving reproductive outcomes. IL is cost-effective and has fewer side effects compared to other treatments like IVIg.
  2. Intravenous immunoglobulin-G (IVIg) Therapy: In the past, IVIg was used to down-regulate activated NK cells. However, concerns about viral infections and the high cost led to a decline in its use. IVIg can be effective, but IL has become a more favorable and affordable alternative.
  3. Corticosteroid Therapy: Corticosteroids, such as prednisone and dexamethasone, are commonly used in IVF treatment. They have an immunomodulatory effect and reduce TH-1 cytokine production by CTL. When combined with IL or IVIg, corticosteroids enhance the implantation process. Treatment typically starts 10-14 days before embryo transfer and continues until the 10th week of pregnancy.
  4. Heparinoid Therapy: Low molecular weight heparin (Clexane, Lovenox) can improve IVF success rates in women with antiphospholipid antibodies (APAs) and may prevent pregnancy loss in certain thrombophilias when used during treatment. It is administered subcutaneously once daily from the start of ovarian stimulation.
  5. TH-1 Cytokine Blockers (Enbrel, Humira): TH-1 cytokine blockers have limited effectiveness in the IVF setting and, in my opinion, no compelling evidence supports their use. They may have a role in treating threatened miscarriage caused by CTL/NK cell activation, but not for IVF treatment. TH-1 cytokines are needed for cellular response, during the early phase of implantation, so completely blocking them could hinder normal implantation.
  1. Baby Aspirin and IVF: Baby aspirin doesn’t offer much value in treating implantation dysfunction (IID) and may even reduce the chance of success. This is because aspirin thins the blood and increases the risk of bleeding, which can complicate procedures like egg retrieval or embryo transfer during IVF, potentially compromising its success.
  2. Leukocyte Immunization Therapy (LIT): LIT involves injecting the male partner’s lymphocytes into the mother to improve the recognition of the embryo as “self” and prevent rejection. LIT can up-regulate Treg cells and down-regulate NK cell activation, improving the balance of TH-1 and TH-2 cells in the uterus. However, the same benefits can be achieved through IL (Intralipid) therapy combined with corticosteroids. IL is more cost-effective, and the use of LIT is prohibited by law in the USA.

Types of Immunologic Implantation Dysfunction (IID) and NK Cell Activation:

  1. Autoimmune Implantation Dysfunction: Women with a personal or family history of autoimmune conditions like Rheumatoid arthritis, Lupus Erythematosus, thyroid autoimmune disease (Hashimoto’s disease and thyrotoxicosis), and endometriosis (in about one-third of cases) may experience autoimmune IID. However, autoimmune IID can also occur without any personal or family history of autoimmune diseases.Treatment for NK cell activation in IVF cases complicated by autoimmune IID involves a combination of daily oral dexamethasone from the start of ovarian stimulation until the 10th week of pregnancy, along with 20% intralipid (IL) infusion 10 days to 2 weeks before embryo transfer. With this treatment, the chance of a viable pregnancy occurring within two completed embryo transfer attempts is approximately 70% for women <40 years old who have  normal ovarian reserve.
  2. Alloimmune Implantation Dysfunction: NK cell activation occurs when the uterus is exposed to an embryo that shares certain genotypic (HLA/DQ alpha) similarities with the embryo recipient.
    • Partial DQ alpha/HLA genetic matching: Couples who share only one DQ alpha/HLA gene are considered to have a “partial match.” If NK cell activation is also present, this partial match puts the couple at a disadvantage for IVF success. However, it’s important to note that DQ alpha/HLA matching, whether partial or total, does not cause IID without associated NK cell activation. Treatment for partial DQ alpha/HLA match with NK cell activation involves IL infusion and oral prednisone as adjunct therapy. IL infusion is repeated every 2-4 weeks after pregnancy is confirmed and continued until the 24th week of gestation. In these cases, only one embryo is transferred at a time to minimize the risk of NK cell activation.
    • Total (Complete) Alloimmune Genetic Matching: A total alloimmune match occurs when the husband’s DQ alpha genotype matches both that of the partner. Although rare, this total match along with NK cell activation significantly reduces the chance of a viable pregnancy resulting in a live birth at term. In some cases, the use of a gestational surrogate may be necessary.

It should be emphasized that poor embryo quality is not always the main cause of reproductive dysfunction and that the complex interaction between embryonic cells and the lining of the uterus  plays a critical role in successful implantation. Women with personal or family histories of autoimmune disease or endometriosis and those with unexplained (often repeated) IVF failure or recurrent pregnancy loss, often have immunologic implantation dysfunction (IID as the underlying cause . For such women, it is important to understand how IID leads to reproductive failure and how selective treatment options such as intralipid (IL), corticosteroid and heparinoid therapy, can dramatically  improve reproductive outcomes. Finally, there is real hope that proper identification and management of IID can  significantly improve the chance of successful reproduction and ultimately contribute to better quality of life after birth.

_____________________________________________________________

PLEASE SHARE THIS WITH OTHERS AND HELP SPREAD THE WORD!!

 

Herewith are  online links to 2  E-books recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

  1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) ; https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

 

  1. Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link ;https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

 

I invite you to visit my very recently launched “Podcast”,  “HAVE A BABY” on RUMBLE;   https://rumble.com/c/c-3304480

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com\

 

 

 

 

Name: Irit B

Dear doctor Sher

I am a 44.5 femal, suffering from secondary repeated miscarriages due to alloiimunity (dq-alpha gene match + extremly elevated nk cells).

Right now I am going through the 7th miscarriage. I had the 6th miscarriage on October 23. Failed on immune protocols.
Cannot use steroids as i had adison crises and ovarian damage due to steroids overload. Took me a lot of time to recover (with a lot of hard work on my side).

I would like to use the service of a gestational carrier with my own eggs.
I get pregnant naturally but barely respond to hormons (if at all).

What kind of medications and stimulation protocol would you offer me to use?
You write about a trigger with 2 ovidral injections, is it in use alongside with 2 decapeptile or just 2 ovidrals?

I am overseas therefore I cannot do the ivf at your clinic.

Your advice is deeply appreciated,
Irit

Answer:

Clearly you are a candidate for gestational surrogacy, provided that you have competent, euploid embryos available to transfer. Using a gestational surrogate for transfer of such a blastocyst, is pretty straight forward. Most IVF programs that do FET can advise appropriately. However, be sure that the blastocyst transferred is euploid and competent!

Good luck!

Geoff Sher

___________________________________________________________________________

 

Name: Nino K

Hello doctor; i am 32 yo female, amh 1.59 ng/ml.

Partner 32 years old with varicocele, 0 morphology and very low count. (Impossible to check for dna fragmentation)

I am Insulin resistant, on metformin 750 for 5 months now with no results. No pcos, BMI 22.

Had 1 failed icsi (we did picsi and used calcium). 8 eggs retrieved, 4 fertilized, 2 reached day 3 compact stage; both arrested by day 5.
Did estrogen priming. Afc 7.
My protocol started on day 2 from menstrual cycle:
Day1: Cetrotide 0.25 morning ; gonal f 250 evening
Day2: Same
Day 3: Same
Day 4: same
Day 5: same (estradiol 2380 pg/ml)
Day 6: Cetrotide 0.25 morning; gonal f 75 evening; decapeptyle 0.1 (2 injections) at 24:00.
Day 7: nothing
Day 8: egg retrieval.

Please kindly write me what do you think about this protocol. Could it have contributed to failed cycle?

I thank you in advance and look forward to your response.
Best regards,
Nina

Answer:

There clearly is both male factor infertility and diminished ovarian reserve (DOR). Both issues need to be thoroughly evaluated and addressed. The cause of the male factor will need further testing and the DOR requires a very individualized approach to ovarian stimulation…(see below).

I strongly suggest that you contact my assistant, Patti Converse (702-533-2691) and set up an online  consultation with me to discuss,

  • ADDRESSING DIMINISHING OVARIAN RESERVE (DOR) IN IVF

Understanding the impact of ovarian reserve on the success of in vitro fertilization (IVF) is crucial when it comes to reproductive health. This article aims to simplify and clarify these concepts, emphasizing their significance in the selection of ovarian stimulation protocols for IVF. By providing you with this information, we hope to shed light on the importance of considering these factors and making informed decisions regarding fertility treatments.

  1. The Role of Eggs in Chromosomal Integrity: In the process of creating a healthy embryo, it is primarily the egg that determines the chromosomal integrity, which is crucial for the embryo’s competency. A competent egg possesses a normal karyotype, increasing the chances of developing into a healthy baby. It’s important to note that not all eggs are competent, and the incidence of irregular chromosome numbers (aneuploidy) increases with age.
  2. Meiosis and Fertilization: Following the initiation of the LH surge or the hCG trigger shot, the egg undergoes a process called meiosis, halving its chromosomes to 23. During this process, a structure called the polar body is expelled from the egg, while the remaining chromosomes are retained. The mature sperm, also undergoing meiosis, contributes 23 chromosomes. Fertilization occurs when these chromosomes combine, resulting in a euploid embryo with 46 chromosomes. Only euploid embryos are competent and capable of developing into healthy babies.
  3. The Significance of Embryo Ploidy: Embryo ploidy, referring to the numerical chromosomal integrity, is a critical factor in determining embryo competency. Aneuploid embryos, which have an irregular number of chromosomes, are often incompetent and unable to propagate healthy pregnancies. Failed nidation, miscarriages, and chromosomal birth defects can be linked to embryo ploidy issues. Both egg and sperm aneuploidy can contribute, but egg aneuploidy is usually the primary cause.
  4. Embryo Development and Competency: Embryos that develop too slowly or too quickly, have abnormal cell counts, contain debris or fragments, or fail to reach the blastocyst stage are often aneuploid and incompetent. Monitoring these developmental aspects can provide valuable insights into embryo competency.
  5. Diminished Ovarian Reserve (DOR): As women advance in their reproductive age, the number of remaining eggs in the ovaries decreases. Diminished ovarian reserve (DOR) occurs when the egg count falls below a certain threshold, making it more challenging to respond to fertility drugs effectively. This condition is often indicated by specific hormone levels, such as elevated FSH and decreased AMH. DOR can affect women over 40, but it can also occur in younger

 

Why IVF should be regarded as treatment of choice for women who have diminished ovarian reserve ( DOR):

Understanding the following factors will go a long way in helping you to make an informed decision and thereby improve the chances of a successful IVF outcome.

  1. Ovarian Reserve: While chronological age plays a vital role in determining the quality of eggs and embryos [there is an increased risk of egg aneuploidy (irregular chromosome number) in eggs,  leading to reduced embryo competency. Additionally, women with declining ovarian reserve (DOR), regardless of their age, are more likely to have aneuploid eggs/embryos. Therefore, it is crucial to address age-related factors and ovarian reserve to enhance IVF success.
  2. Excessive Luteinizing Hormone (LH) and Testosterone Effects: In women with DOR, their ovaries and developing eggs are susceptible to the adverse effects of excessive LH, which stimulates the overproduction of male hormones like testosterone. While some testosterone promotes healthy follicle growth and egg development, an excess of testosterone has a negative impact. Therefore, in both older women or those who (regardless of their age) have DOR, ovarian stimulation protocols that down-regulate LH activity before starting gonadotropins are necessary to improve egg/embryo quality and IVF outcomes.
  3. It is possible to regulate the  decline in egg/embryo competency by tailoring ovarian stimulation protocols. Here are my preferred protocols for women with relatively normal ovarian reserve:
  1. Conventional Long Pituitary Down Regulation Protocol:
  • Begin birth control pills (BCP) early in the cycle for at least 10 days.
  • Three days before stopping BCP, overlap with an agonist like Lupron for three days.
  • Continue daily Lupron until menstruation begins.
  • Conduct ultrasound and blood estradiol measurements to assess ovarian status.
  • Administer FSH-dominant gonadotropin along with Menopur for stimulation.
  • Monitor follicle development through ultrasound and blood estradiol measurements.
  • Trigger egg maturation using hCG injection, followed by egg retrieval.
  1. Agonist/Antagonist Conversion Protocol (A/ACP):
  • Similar to the conventional long down regulation protocol but replace the agonist with a GnRH antagonist from the onset of post-BCP menstruation until the trigger day.
  • Consider adding supplementary human growth hormone (HGH) for women with DOR.
  • Consider using “priming” with estrogen prior to gonadotropin administration
  1. Protocols to Avoid in Women with DOR: Certain ovarian stimulation protocols may not be suitable for women with declining ovarian reserve:
  • Microdose agonist “flare” protocols
  • High dosages of LH-containing fertility drugs such as Menopur
  • Testosterone-based supplementation
  • DHEA supplementation
  • Clomiphene citrate or Letrozole
  • Low-dosage hCG triggering or agonist triggering for women with DOR

 

 

Preimplantation Genetic Screening/Testing for aneuploidy (PGS/PGTA): PGS/PGTA is a valuable tool for identifying chromosomal abnormalities in eggs and embryos. By selecting the most competent (euploid) embryos, PGS/PGTA significantly improves the success of IVF, in women with DOR.

Understanding the impact of declining ovarian reserve on IVF outcomes is essential when making decisions about fertility treatments. Diminished ovarian reserve (DOR) can affect egg quality and increase the likelihood of aneuploid embryos with resultant IVF failure. By considering this factor, you can make informed choices and work closely with fertility specialists to optimize your chances of success. Remember, knowledge is power, and being aware of these aspects empowers you to take control of your reproductive journey.

__________________________________________________________________________

PLEASE SHARE THIS WITH OTHERS AND HELP SPREAD THE WORD!!

 

Herewith are  online links to 2  E-books recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

  1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) ; https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

 

  1. Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link ;https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

 

I invite you to visit my very recently launched “Podcast”,  “HAVE A BABY” on RUMBLE;   https://rumble.com/c/c-3304480

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com\

 

 

Name: Jessica B

Hello Dr. Sher,

I’m hoping you can provide me some insight and comfort. Quick history – I have had 6 early losses prior to 7 weeks over 4 years. After a lot of testing and trials with my RE, we went towards IVF. 3 cycles – one failed, one miscarriage, and one live birth. After the second transfer, we reached out to another doctor who was able to get some immune testing done for us. We learned I had elevated NK cells and my husband and I were a partial DQa match. I was prescribed intralipids prior to transfer and up until 24 weeks. We now have a healthy 2 year old!

Fast forward to now – we were looking into trying for a second child, likely through IVF, when we fell pregnant naturally! I am currently 9 weeks, when I had never gotten past 7 weeks prior to my son. When learning I was pregnant, I contacted my RE since she had been through everything with us before, and she allowed me to go on Prednisone starting at 10mg and increased to 15mg. Her hands are tied by her practice in that she cannot prescribe intralipids. She also informed me that it has gotten more difficult to get infusions for some reason in Pennsylvania (I confirmed this with the infusion company I had used previously).

My question is, what is the likelihood that I can carry this pregnancy full term without intralipids and only on prednisone (am I taking enough and when would I wean)? I also take baby aspirin, Claritin, Pepcid, and Benadryl (antihistamine protocol). I’m grateful for this pregnancy, but am so afraid of a late term loss.

Thank you for your time!

Answer:

Anything is possible, and I hope it works out. However, it would be of no value in my opinion, to start with immunotherapy now. Intralipid therapy should be initiated 10-14 days before conception to be of significant help!

Good luck and G-d bless!

 

Geoff Sher

Name: Anne C

Dear Dr. Sher,

My periods are getting shorter (around 20 days). Since December, my doctor has been doing this: (already three consecutive times now) starts the Estradiol pretreatment, FSH, Ganirelix and Omnitrope and then stops after a couple of days, and cancels everything, because the antral follicle count is too low. (5 and 2, 5 and 1, 5 and 0)

Is the canceling that is causing my periods to be so short, or is my fertility age ending? I just turned 43-year-old, but I got an euploid last September. (which failed to implant) Should I give it a rest, wait a month, and then try again to be a mother, or time is crucial now?

Also, do shorter periods recruit fewer follicles?

Thanks for being so kind on helping us all. We are all deeply honored and thankful for getting guidance from the number one expertise on the field.

Anne C

Answer:

It sounds as if you have age related diminished ovarian reserve. Respectfully, your antral folicle count can be expected to be low and if you wish to try for a baby through IVF using your own eggs, the number of AFs will not improve and you will have to “bite the bullet” and go with what you’ve got. The only other alternative would be to go to egg donation. The protocol used for ovarian stimulation would need to be carefully chosen, however.

Geoff Sher

______________________________________________________________________

  • ADDRESSING ADVANCING AGE AND DIMINISHING OVARIAN RESERVE (DOR) IN IVF

Understanding the impact of age and ovarian reserve on the success of in vitro fertilization (IVF) is crucial when it comes to reproductive health. This article aims to simplify and clarify these concepts, emphasizing their significance in the selection of ovarian stimulation protocols for IVF. By providing you with this information, we hope to shed light on the importance of considering these factors and making informed decisions regarding fertility treatments.

  1. The Role of Eggs in Chromosomal Integrity: In the process of creating a healthy embryo, it is primarily the egg that determines the chromosomal integrity, which is crucial for the embryo’s competency. A competent egg possesses a normal karyotype, increasing the chances of developing into a healthy baby. It’s important to note that not all eggs are competent, and the incidence of irregular chromosome numbers (aneuploidy) increases with age.
  2. Meiosis and Fertilization: Following the initiation of the LH surge or the hCG trigger shot, the egg undergoes a process called meiosis, halving its chromosomes to 23. During this process, a structure called the polar body is expelled from the egg, while the remaining chromosomes are retained. The mature sperm, also undergoing meiosis, contributes 23 chromosomes. Fertilization occurs when these chromosomes combine, resulting in a euploid embryo with 46 chromosomes. Only euploid embryos are competent and capable of developing into healthy babies.
  3. The Significance of Embryo Ploidy: Embryo ploidy, referring to the numerical chromosomal integrity, is a critical factor in determining embryo competency. Aneuploid embryos, which have an irregular number of chromosomes, are often incompetent and unable to propagate healthy pregnancies. Failed nidation, miscarriages, and chromosomal birth defects can be linked to embryo ploidy issues. Both egg and sperm aneuploidy can contribute, but egg aneuploidy is usually the primary cause.
  4. Embryo Development and Competency: Embryos that develop too slowly or too quickly, have abnormal cell counts, contain debris or fragments, or fail to reach the blastocyst stage are often aneuploid and incompetent. Monitoring these developmental aspects can provide valuable insights into embryo competency.
  5. Diminished Ovarian Reserve (DOR): As women advance in their reproductive age, the number of remaining eggs in the ovaries decreases. Diminished ovarian reserve (DOR) occurs when the egg count falls below a certain threshold, making it more challenging to respond to fertility drugs effectively. This condition is often indicated by specific hormone levels, such as elevated FSH and decreased AMH. DOR can affect women over 40, but it can also occur in younger

 

Why IVF should be regarded as treatment of choice for older women an those who have diminished ovarian reserve ( DOR):

Understanding the following factors will go a long way in helping you to make an informed decision and thereby improve the chances of a successful IVF outcome.

  1. Age and Ovarian Reserve: Chronological age plays a vital role in determining the quality of eggs and embryos. As women age, there is an increased risk of aneuploidy (abnormal chromosome numbers) in eggs and embryos, leading to reduced competency. Additionally, women with declining ovarian reserve (DOR), regardless of their age, are more likely to have aneuploid eggs/embryos. Therefore, it is crucial to address age-related factors and ovarian reserve to enhance IVF success.
  2. Excessive Luteinizing Hormone (LH) and Testosterone Effects: In women with DOR, their ovaries and developing eggs are susceptible to the adverse effects of excessive LH, which stimulates the overproduction of male hormones like testosterone. While some testosterone promotes healthy follicle growth and egg development, an excess of testosterone has a negative impact. Therefore, in older women or those with DOR, ovarian stimulation protocols that down-regulate LH activity before starting gonadotropins are necessary to improve egg/embryo quality and IVF outcomes.
  3. Individualized Ovarian Stimulation Protocols: Although age is a significant factor in aneuploidy, it is possible to prevent further decline in egg/embryo competency by tailoring ovarian stimulation protocols. Here are my preferred protocols for women with relatively normal ovarian reserve:
  1. Conventional Long Pituitary Down Regulation Protocol:
  • Begin birth control pills (BCP) early in the cycle for at least 10 days.
  • Three days before stopping BCP, overlap with an agonist like Lupron for three days.
  • Continue daily Lupron until menstruation begins.
  • Conduct ultrasound and blood estradiol measurements to assess ovarian status.
  • Administer FSH-dominant gonadotropin along with Menopur for stimulation.
  • Monitor follicle development through ultrasound and blood estradiol measurements.
  • Trigger egg maturation using hCG injection, followed by egg retrieval.
  1. Agonist/Antagonist Conversion Protocol (A/ACP):
  • Similar to the conventional long down regulation protocol but replace the agonist with a GnRH antagonist from the onset of post-BCP menstruation until the trigger day.
  • Consider adding supplementary human growth hormone (HGH) for women with DOR.
  • Consider using “priming” with estrogen prior to gonadotropin administration
  1. Protocols to Avoid for Older Women or Those with DOR: Certain ovarian stimulation protocols may not be suitable for older women or those with declining ovarian reserve:
  • Microdose agonist “flare” protocols
  • High dosages of LH-containing fertility drugs such as Menopur
  • Testosterone-based supplementation
  • DHEA supplementation
  • Clomiphene citrate or Letrozole
  • Low-dosage hCG triggering or agonist triggering for women with DOR

 

 

Preimplantation Genetic Screening/Testing(PGS/T): PGS/T is a valuable tool for identifying chromosomal abnormalities in eggs and embryos. By selecting the most competent (euploid) embryos, PGS/T significantly improves the success of IVF, especially in older women or those with DOR.

Understanding the impact of advancing age and declining ovarian reserve on IVF outcomes is essential when making decisions about fertility treatments. Age-related factors can affect egg quality and increase the likelihood of aneuploid embryos with resultant IVF failure. Diminished ovarian reserve (DOR) further complicates the process. By considering these factors, you can make informed choices and work closely with fertility specialists to optimize your chances of success. Remember, knowledge is power, and being aware of these aspects empowers you to take control of your reproductive journey.

 

 

 

 

 

 

.

 

 

 

Name: Leopolina D

My period is usually iregular. I started my last one december 15 . And now my period is late by 11 days. I took two at home test which were both negative and today I did a blood test that says 1,2? What does that mean? Am I pregnant or not?

Answer:

So Sorry!  This does not look good!

Going through IVF is a major investment, emotionally, physically, and financially, for every patient or couple. One of the most crucial moments is receiving the result of the blood test for human chorionic gonadotropin (hCG) pregnancy. It’s a big deal! The days after the embryo transfer, waiting for this result, can be extremely stressful. That’s why it’s crucial for the IVF doctor and staff to handle this information with care and professionalism. They should be accessible to the patient/couple and provide results promptly and sensitively.

Testing urine or blood to check for human chorionic gonadotropin (hCG) is the best way to confirm pregnancy. Urine tests are cheaper and more commonly used. They are also more convenient because they can be done anywhere. However, blood tests are more reliable and sensitive than urine tests. They can detect pregnancy earlier and at lower hCG levels. Blood tests are also more accurate and can track changes in hCG levels over time. Urine tests can detect hCG when blood levels are above 20IU, which is about 16-18 days after ovulation or 2-3 days after a missed period. Blood tests can measure any concentration of hCG about 12-13 days after ovulation.

Detecting hCG in the blood early on and tracking its increase is especially useful for women undergoing fertility treatments like controlled ovarian stimulation or in vitro fertilization. The sooner hCG is detected and measured, the more information can be gathered about the success of implantation and the health of the developing embryo.

Typically, two beta hCG blood tests are done, spaced 2-4 days apart. It’s best to wait for the results of the second test before reporting on the pregnancy. This is because an initial result can change, even from equivocal or negative to positive. Sometimes a normal embryo takes longer to implant, and the hCG level can be initially low or undetectable. Regardless of the initial level, the test should be repeated after two days to check for a significant rise in hCG. A significant rise usually indicates that an embryo is implanting, which suggests a possible pregnancy. Waiting for the second test result helps avoid conveying false hope or disappointment.


It’s important to note that beta hCG levels don’t double every two days throughout pregnancy. Once the levels rise above 4,000U, they tend to increase more slowly. Except in specific cases like IVF using an egg donor or transfer of genetically tested embryos, the birth rate following IVF in younger women is around 40% per embryo transfer. Patients need to have realistic expectations and should be informed about how and when they will receive the news, as well as counseling in case of a negative outcome.

When an embryo starts to implant, it releases the pregnancy hormone hCG into the woman’s bloodstream. Around 12 days after egg retrieval, 9 days after a day 3 embryo transfer, or 7 days after a blastocyst transfer, a woman should have a quantitative beta hCG blood pregnancy test performed. By that time, most of the hCG injected to prepare the eggs for retrieval should have cleared from the bloodstream. So, if the test detects more than 10 IU of hCG per ml of blood, it indicates that the embryo has attempted to implant. In third-party IVF (e.g., ovum donation, gestational surrogacy, embryo adoption, or frozen embryo transfers), no hCG trigger is administered, so any amount of hCG detected in the blood is considered significant.

Sometimes, there is a slow initial rise in hCG between the first and second tests (failure to double every 48 hours). In such cases, a third and sometimes a fourth hCG test should be done at two-day intervals. A failure to double on the third and/or fourth test is a poor sign and could indicate a failed or dysfunctional implantation. In some cases, a progressively slow rising hCG level might indicate an ectopic pregnancy, which requires additional testing and follow-up.

In certain situations, the first beta hCG level starts high, drops with the second test, and then starts doubling again. This could suggest that initially, multiple embryos started to implant but only one survived to continue a healthy implantation.

It’s customary for the IVF clinic staff to inform the patient/couple and the referring physician about the hCG pregnancy test results. Often, the IVF physician or nurse-coordinator coordinates with the referring physician to arrange all necessary pregnancy tests. If the patient/couple prefer to make their own arrangements, the program should provide detailed instructions.

In some cases, when the two blood pregnancy tests show that one or more embryos are implanting, certain programs recommend daily injections of progesterone or the use of vaginal hormone suppositories for several weeks to support the implantation process. Others give hCG injections three times a week until the pregnancy can be confirmed by ultrasound examination. Some IVF programs don’t prescribe any hormones after the embryo transfer.

Patients with appropriate doubling of hCG levels within two days after frozen embryo transfer (FET) or third-party IVF procedures such as surrogacy or egg donation may receive estradiol and progesterone injections, often along with vaginal hormone suppositories, for 10 weeks after the implantation is diagnosed by blood pregnancy testing.

A positive Beta hCG blood pregnancy test indicates the possibility of conception, but ultrasound confirmation is needed to confirm the pregnancy. Until then, it is referred to as a “chemical pregnancy.” Only when ultrasound examination confirms the presence of a gestational sac, clinical examination establishes a viable pregnancy, or after abortion when products of conception are detected, is it called a clinical intrauterine pregnancy.

A significantly elevated  hCG blood level without concomitant detection of an gestational sac inside the uterus by ultrasound after 5 weeks gestation raises the suspicion of an ectopic (tubal) pregnancy.

The risk of miscarriage gradually decreases once a viable clinical pregnancy is diagnosed (a conceptus with a regular heartbeat of 110-180 beats per minute). From this point onward, the risk of miscarriage is usually 10- 15% for women under 40 years old and around 35% for women in their early forties.

Dealing with successful IVF cases is relatively easy as everyone feels happy and validated. The real challenge lies in handling unsuccessful cases. Setting rational expectations from the beginning is crucial. In some cases (fortunately rare), emotional pressure may overwhelm the patient/couple, leading to a need for counseling or psychiatric therapy. I always advise my patients that receiving optimal care doesn’t always guarantee the desired outcome. There are many variables beyond our control, especially the unpredictable nature of fate. With around 36 years of experience in this field, I strongly believe that when it comes to IVF, the saying “man proposes while God disposes” always holds.

There are a few important things to consider when interpreting blood hCG levels. Levels can vary widely, ranging from 5mIU/ml to over 400mIU/ml, 10 days after ovulation or egg retrieval. The levels double every 48-72 hours until the 6th week of pregnancy, after which the doubling rate slows down to about 96 hours. By the end of the 1st trimester, hCG levels reach 13,000-290,000 IU and then slowly decline to around 26,000-300,000 IU at full term. Here are the average hCG levels during the first trimester:

  • 3 weeks after the last menstrual period (LMP): 5-50 IU
  • 4 weeks LMP: 5-426 IU
  • 5 weeks LMP: 18-7,340 IU
  • 6 weeks LMP: 1,080-56,500 IU
  • 7-8 weeks LMP: 7,650-229,000 IU
  • 9-12 weeks LMP: 25,700-288,000 IU

Most doctors wait until around the 7th week to perform an ultrasound to confirm pregnancy. By that time, the heartbeat should be clearly visible, providing a more reliable assessment of the pregnancy’s viability.

In some cases, blood hCG levels can be unusually high or increase faster than normal. This could indicate multiple pregnancies or a molar pregnancy. Rarely, conditions unrelated to pregnancy, such as certain ovarian tumors or cancers, can cause detectable hCG levels in both blood and urine.

 

To summarize, testing urine or blood for hCG is the most reliable way to confirm pregnancy. Urine tests are more common and convenient, while blood tests are more accurate and can detect pregnancy earlier. Tracking hCG levels in the blood is especially important for women undergoing fertility treatments. It’s essential to wait for the results of a second blood test before confirming pregnancy to avoid false hope or disappointment. Interpreting hCG levels requires considering various factors, and doctors usually perform an ultrasound around the 7th week for a more accurate assessment. Unusually high hCG levels may indicate multiple pregnancies or other conditions unrelated to pregnancy. Providing sensitive and timely communication of results is crucial for IVF clinics to support patients through the emotional journey.

_____________________________________________________________________________________

PLEASE SHARE THIS WITH OTHERS AND HELP SPREAD THE WORD!!

 

Herewith are  online links to 2  E-books recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

  1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) ; https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

 

  1. Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link ;https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

 

I invite you to visit my very recently launched “Podcast”,  “HAVE A BABY” on RUMBLE;   https://rumble.com/c/c-3304480

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com\

 

 

Name: Kelsey H

My first FET in 2020 was successful and resulted in the birth of my son. Since 2022, I have had four more FETs: the first one failed to implant and the next three implanted but miscarried between 5-6 weeks. The most recent transfer, we transferred two untested embryos (all our previous transfers had been PGT normal embryos). Where should we go from here?

Answer:

Implantation dysfunction is often overlooked as a significant reason for IVF failure. This is especially true when IVF failure is unexplained, or when there are recurring pregnancy losses or underlying issues with the uterus, such as endo-uterine surface lesions, thin uterine lining (endometrium), or immunological factors.

IVF success rates have been improving in the past decade. Currently, in the United States, the average live birth rate per embryo transfer for women under 40 years old using their own eggs is about 2:5 per woman undergoing embryo transfer. However, there is a wide range of success rates among different IVF programs, varying from 20% to almost 50%. Based on these statistics, most women in the United States need to undergo two or more IVF-embryo transfer attempts to have a baby. Many IVF practitioners in the United States attribute the differences in success rates to variations in expertise among embryology laboratories, but this is not entirely accurate. Other factors, such as differences in patient selection, the failure to develop personalized protocols for ovarian stimulation, and the neglect of infectious, anatomical, and immunological factors that affect embryo implantation, are equally important.

Approximately 80% of IVF failures occur due to “embryo incompetency,” mainly caused by ( irregularities in chromosome number (aneuploidy), which is often related to the advancing age of the woman, diminished ovarian reserve ( DOR) but can also be influenced by the ovarian stimulation protocol chosen, and sperm dysfunction (male infertility). However, in around 20% of cases with dysfunction, failure is caused by problems with embryo implantation.

This section will focus on embryo implantation dysfunction and IVF failure which in the vast majority of cases is caused by:

  1. 1. Anatomical irregularities of the inner uterine surface:
  2. a) Surface lesions such as polyps/fibroids/ scar tissue
  3. b)endometrial thickness
  4.  
  5. 2. Immunologic Implantation Dysfunction ( IID)lesions
  6. a)Autoimmune IID
  7. b) Alloimmune IID

  1. ANATOMICAL IMPLANTATION DYSFUNCTION
  2. a) Surface lesions such as polyps/fibroids/ scar tissue

When there are problems with the structure of the uterus, it can lead to difficulties in getting pregnant. While uterine fibroids usually don’t cause infertility, they can affect fertility when they distort the uterine cavity or protrude through the lining. Even small fibroids located just beneath the lining and protruding into the cavity can decrease the chances of the embryo attaching. Multiple fibroids within the uterine wall that encroach upon the cavity can disrupt blood flow, impair estrogen delivery, and prevent proper thickening of the lining. These issues can be identified through ultrasound during the menstrual cycle’s proliferative phase. Any lesion on the uterine surface, such as submucous fibroids, adhesions, endometrial polyps, or placental polyps, can interfere with implantation by causing a local inflammatory response similar to the effect of an intrauterine contraceptive device (IUD).

Clearly, even small uterine lesions can have a negative impact on implantation. Considering the high costs and emotional toll associated with in vitro fertilization (IVF) and related procedures, it is reasonable to perform diagnostic tests like hysterosalpingography (HSG), fluid ultrasound examination (hysterosonogram), or hysteroscopy before starting IVF. Uterine lesions that can affect implantation often require surgical intervention. In most cases, procedures like dilatation and curettage (D&C) or hysteroscopic resection are sufficient. Rarely a laparotomy may be needed. Such interventions often lead to an improvement in the response of the uterine lining.

Hysterosonogram( HSN/saline ultrasound) is a procedure where a sterile saline solution is injected into the uterus through the cervix using a catheter. Vaginal ultrasound is then used to examine the fluid-filled cavity for any irregularities that might indicate surface lesions like polyps, fibroid tumors, scarring, or a septum. When performed by an expert, HSN is highly effective in detecting even the smallest lesions and can supplant hysteroscopy in certain cases. HSN is less expensive, less invasive/traumatic, and equally effective as hysteroscopy. The only drawback is that if a lesion is found, hysteroscopy may still be needed for treatment.

Hysteroscopy is a diagnostic procedure performed in an office setting with minimal discomfort to the patient. It involves inserting a thin, lighted instrument called a hysteroscope through the vagina and cervix into the uterus to examine the uterine cavity. Normal saline is used to distend the uterus during the procedure. Like HSN, hysteroscopy allows for direct visualization of the inside of the uterus to identify defects that could interfere with implantation. We have observed that around one in eight IVF candidates have lesions that need attention before undergoing IVF to optimize the chances of success. I strongly recommend that all patients undergo therapeutic surgery, usually hysteroscopy, to correct any identified issues before proceeding with IVF. Depending on the severity and nature of the problem, hysteroscopy may require general anesthesia and should be performed in a surgical facility equipped for laparotomy if necessary.

  1. b) Thickness of the uterine lining (endometrium)

As far back as In 1989, I and my team made an important discovery about using ultrasound to assess the thickness of the endometrium during the late proliferative phase of both “ natural” and hormone-stimulated cycles. The assessment helped predict the chances of conception. We found that an ideal thickness of over 9mm at the time of ovulation , egg retrieval or with the commencement of progesterone therapy in embryo recipient cycles ( e.g., IVF with egg donation, gestational, surrogacy and embryo adoption) was associated with optimal implantation rates, while an endometrial thickness of less than 8 mm was associated with failure to implant or early pregnancy loss in the vast majority of cases. An endometrium measuring <8mm was almost invariably associated with failure to implant or early pregnancy loss in the while an endometrium measuring 8 to 9 mm was regarded as being intermediate, and while pregnancies did occur in this range, the rates were only slightly lower than with an optimal lining of 9 mm

A “poor” uterine lining typically occurs when the innermost layer of the endometrium (basal or germinal endometrium) is unable to respond to estrogen by developing a thick enough outer “functional” layer to support successful embryo implantation and placental development. The “functional” layer, which accounts for two-thirds of the total endometrial thickness, is shed during menstruation if pregnancy does not occur.

The main causes of a poor uterine lining are:

  1. Damage to the basal endometrium due to:
    • Inflammation of the endometrium (endometritis), often resulting from retained products of conception after abortion, miscarriage, or childbirth.
    • Surgical trauma caused by aggressive dilatation and curettage (D&C).
  1. Insensitivity of the basal endometrium to estrogen due to:
    • Prolonged (back to back) use of clomiphene citrate for ovarian stimulation or…
    • Prenatal exposure to diethylstilbestrol (DES), a drug given to prevent miscarriage in the 1960s.
  1. Overexposure of the uterine lining to male hormones produced by the ovaries or administered during ovarian stimulation (primarily testosterone):
    • Older women, women with DOR (poor responders), and women with polycystic ovarian syndrome (PCOS) often have increased biological activity of luteinizing hormone (LH), leading to testosterone overproduction by the ovarian connective tissue (stroma/theca). This effect can be further amplified when certain ovarian stimulation protocols were high doses of menotropins ( e.g., Menopur) are used.
  1. Reduced blood flow to the basal endometrium caused by:
    • Multiple uterine fibroids, especially if they are located beneath the endometrium (submucosal).
    • Uterine adenomyosis, which involves extensive abnormal invasion of endometrial glands into the uterine muscle.

In 1996 I introduced the Vaginal administration of Sildenafil (Viagra) to improve endometrial thickening. The selective administration of Sildenafil has shown great promise in improving uterine blood flow and increasing endometrial thickening in cases of thin endometrial linings. When administered vaginally, it is quickly absorbed and reaches high concentrations in the uterine blood system, diluting as it enters the systemic circulation. This method has been found to have minimal systemic side effects. However, it is important to note that Viagra may not be effective in all cases, as some cases of thin uterine linings may involve permanent damage to the basal endometrium, rendering it unresponsive to estrogen.

Severe endometrial damage leading to poor responsiveness to estrogen can occur in various situations. These include post-pregnancy endometritis (inflammation after childbirth), chronic granulomatous inflammation caused by uterine tuberculosis (rare in the United States), and significant surgical injury to the basal endometrium (which can happen after aggressive D&C procedures).

 

  1. IMMUNOLOGIC IMPLANTATION DYSFUNCTION (IID)

There is a growing recognition that problems with the immune function in the uterus can lead to embryo implantation dysfunction. The failure of proper immunologic interaction during implantation has been implicated as a cause of recurrent miscarriage, late pregnancy fetal loss, IVF failure, and infertility. Some immunologic factors that may contribute to these issues include antiphospholipid antibodies (APA), antithyroid antibodies (ATA) , and activated natural killer cells (NKa).

  • Activated natural Killer Cells (NKa):

During ovulation and early pregnancy, the uterine lining is frequented by NK cells and T-cells, which together make up more than 80% of the immune cells in the uterine lining. These cells travel from the bone marrow to the endometrium where they proliferate under hormonal regulation. When exposed to progesterone, they produce TH-1 and TH-2 cytokines. TH-2 cytokines help the trophoblast (embryo’s “root system”) to penetrate the uterine lining, while TH-1 cytokines induce apoptosis (cell suicide), limiting placental development to the inner part of the uterus. The balance between TH1 and TH-2 cytokines is crucial for optimal placental development. NK cells and T-cells contribute to cytokine production. Excessive TH-1 cytokine production is harmful to the trophoblast and endometrial cells, leading to programmed cell death and ultimately to implantation failure. Functional NK cells reach their highest concentration in the endometrium around 6-7days after ovulation or exposure to progesterone, which coincides with the time of embryo implantation. It’s important to note that measuring the concentration of blood NK cells doesn’t reflect NK cell activation (NKa). The activation of NK cells is what matters. In certain conditions like endometriosis, the blood concentration of NK cells may be below normal, but NK cell activation is significantly increased.

There are several laboratory methods to assess NK cell activation (cytotoxicity), including immunohistochemical assessment of uterine NK cells and measuring TH-1 cytokines in the uterus or blood. However, the K-562 target cell blood test remains the gold standard. In this test, NK cells isolated from a woman’s blood are incubated with specific “target cells,” and the percentage of killed target cells is quantified. More than 12% killing indicates a level of NK cell activation that usually requires treatment. Currently, there are only a few Reproductive Immunology Reference Laboratories in the USA capable of reliably performing the K-562 target cell test.

There is a common misconception that adding IL (intralipid) or Intravenous gammaglobulin (IVIg) to NK cells can immediately downregulate NK cell activity. However, neither IL and IVIg cannot significantly suppress already activated NK cells. They are believed to work by regulating NK cell progenitors, which then produce downregulated NK cells. To assess the therapeutic effect, IL/IVIg infusion should be done about 14 days before embryos are transferred to the uterus to ensure a sufficient number of normal functional NK cells are present at the implantation site during embryo transfer. Failure to recognize this reality has led to the erroneous demand from IVF doctors for Reproductive Immunology Reference Laboratories to report on NK cell activity before and immediately after exposure to IVIg or IL at different concentrations. However, since already activated NK cells cannot be deactivated in the laboratory, assessing NKa suppression in this way has little clinical benefit. Even if blood is drawn 10-14 days after IL/IVIg treatment, it would take another 10-14 days to receive the results, which would be too late to be practically advantageous.

  • Antiphospholipid Antibodies:

Many women who struggle with IVF failure or recurrent pregnancy loss, as well as those with a personal or family history of autoimmune diseases like lupus erythematosus, rheumatoid arthritis, scleroderma, and dermatomyositis, often test positive for antiphospholipid antibodies (APAs). Over 30 years ago, I proposed a treatment for women with positive APA tests. This involved using a low dose of heparin to improve the success of IVF implantation and increase birth rates. Research indicated that heparin could prevent APAs from affecting the embryo’s “root system” ( the trophoblast), thus enhancing implantation. We later discovered that this therapy only benefits women whose APAs target specific phospholipids (phosphatidylethanolamine and phosphatidylserine). Nowadays, longer-acting low molecular weight heparinoids like Lovenox and Clexane have replaced heparin.

  • Antithyroid Antibodies ( thyroid peroxidase  -TPO and antithyroglobulin antibodies (TGa)

Between 2% and 5% of women of the childbearing age have reduced thyroid hormone activity (hypothyroidism). Women with hypothyroidism often manifest with reproductive failure i.e., infertility, unexplained (often repeated) IVF failure, or recurrent pregnancy loss (RPL). The condition is 5-10 times more common in women than in men. In most cases hypothyroidism is caused by damage to the thyroid gland resulting from thyroid autoimmunity (Hashimoto’s disease) caused by damage done to the thyroid gland by antithyroglobulin and antimicrosomal auto-antibodies. The increased prevalence of hypothyroidism and thyroid autoimmunity (TAI) in women is likely the result of a combination of genetic factors, estrogen-related effects, and chromosome X abnormalities. This having been said, there is significantly increased incidence of thyroid antibodies in non-pregnant women with a history of infertility and recurrent pregnancy loss and thyroid antibodies can be present asymptomatically in women without them manifesting with overt clinical or endocrinologic evidence of thyroid disease. In addition, these antibodies may persist in women who have suffered from hyper- or hypothyroidism even after normalization of their thyroid function by appropriate pharmacological treatment. The manifestations of reproductive dysfunction thus seem to be linked more to the presence of thyroid autoimmunity (TAI) than to clinical existence of hypothyroidism and treatment of the latter does not routinely result in a subsequent improvement in reproductive performance. It follows that if antithyroid autoantibodies are associated with reproductive dysfunction they may serve as useful markers for predicting poor outcome in patients undergoing assisted reproductive technologies. Some years back, I reported on the fact that 47% of women who harbor thyroid autoantibodies, regardless of the absence or presence of clinical hypothyroidism, have activated uterine natural killer cells (NKa) cells and cytotoxic lymphocytes (CTL) and that such women often present with reproductive dysfunction. We demonstrated that appropriate immunotherapy with IVIG or intralipid (IL) and steroids subsequently often results in a significant improvement in reproductive performance in such cases.

 

Almost 50% of women with antithyroid antibodies do not have activated cytotoxic T lymphocytes (CTL) or natural killer cells (NK cells). This suggests that the antibodies themselves may not be the direct cause of reproductive dysfunction. Instead, the activation of CTL and NK cells, which occurs in about half of the cases with thyroid autoimmunity (TAI), is likely an accompanying phenomenon that damages the early “root system” (trophoblast) of the embryo during implantation.

Treating women who have both antithyroid antibodies and activated NK cells/CTL with intralipid (IL) and steroids improves their chances of successful reproduction. However, women with antithyroid antibodies who do not have activated NK cells/CTL do not require this treatment.

  • Treatment Options for IID:
  1. Intralipid (IL) Therapy: IL is a mixture of soybean lipid droplets in water, primarily used for providing nutrition. When administered intravenously, IL supplies essential fatty acids that can activate certain receptors in NK cells, reducing their cytotoxic activity and enhancing implantation. IL, combined with corticosteroids, suppresses the overproduction of pro-inflammatory cytokines by NK cells, improving reproductive outcomes. IL is cost-effective and has fewer side effects compared to other treatments like IVIg.
  2. Intravenous immunoglobulin-G (IVIg) Therapy:In the past, IVIg was used to down-regulate activated NK cells. However, concerns about viral infections and the high cost led to a decline in its use. IVIg can be effective, but IL has become a more favorable and affordable alternative.
  3. Corticosteroid Therapy: Corticosteroids, such as prednisone and dexamethasone, are commonly used in IVF treatment. They have an immunomodulatory effect and reduce TH-1 cytokine production by CTL. When combined with IL or IVIg, corticosteroids enhance the implantation process. Treatment typically starts 10-14 days before embryo transfer and continues until the 10th week of pregnancy.
  4. Heparinoid Therapy: Low molecular weight heparin (Clexane, Lovenox)can improve IVF success rates in women with antiphospholipid antibodies (APAs) and may prevent pregnancy loss in certain thrombophilias when used during treatment. It is administered subcutaneously once daily from the start of ovarian stimulation.
  5. TH-1 Cytokine Blockers (Enbrel, Humira):TH-1 cytokine blockers have limited effectiveness in the IVF setting and, in my opinion, no compelling evidence supports their use. They may have a role in treating threatened miscarriage caused by CTL/NK cell activation, but not for IVF treatment. TH-1 cytokines are needed for cellular response, during the early phase of implantation, so completely blocking them could hinder normal implantation.
  6. Baby Aspirin and IVF:Baby aspirin doesn’t offer much value in treating implantation dysfunction (IID) and may even reduce the chance of success. This is because aspirin thins the blood and increases the risk of bleeding, which can complicate procedures like egg retrieval or embryo transfer during IVF, potentially compromising its success.
  7. Leukocyte Immunization Therapy (LIT):LIT involves injecting the male partner’s lymphocytes into the mother to improve the recognition of the embryo as “self” and prevent rejection. LIT can up-regulate Treg cells and down-regulate NK cell activation, improving the balance of TH-1 and TH-2 cells in the uterus. However, the same benefits can be achieved through IL (Intralipid) therapy combined with corticosteroids. IL is more cost-effective, and the use of LIT is prohibited by law in the USA.

Types of Immunologic Implantation Dysfunction (IID) and NK Cell Activation:

  1. Autoimmune Implantation Dysfunction: Women with a personal or family history of autoimmune conditions like Rheumatoid arthritis, Lupus Erythematosus, thyroid autoimmune disease (Hashimoto’s disease and thyrotoxicosis), and endometriosis (in about one-third of cases) may experience autoimmune IID. However, autoimmune IID can also occur without any personal or family history of autoimmune diseases. Treatment for NK cell activation in IVF cases complicated by autoimmune IID involves a combination of daily oral dexamethasone from the start of ovarian stimulation until the 10th week of pregnancy, along with 20% intralipid (IL) infusion 10 days to 2 weeks before embryo transfer. With this treatment, the chance of a viable pregnancy occurring within two completed embryo transfer  attempts is approximately 70% for women <40 years old who have  normal ovarian reserve.

  2. Alloimmune Implantation Dysfunction:NK cell activation occurs when the uterus is exposed to an embryo that shares certain genotypic (HLA/DQ alpha) similarities with the embryo recipient. Humans have 23 pairs of chromosomes: one set from the sperm and one set from the egg that created us. Our sixth pair of chromosomes each contain DQ alpha genes. Again, one of these genes is from the sperm and one is from the egg that created us.

Like the genes for eye color, DQ alpha/HLA gene combinations differ between people. Thus, the male (whose  sperm created an embryo is likely to have different DQ alpha/HLA gene combinations than the potential mother . However, there are rare situations in which the male and the female partners have  DQ-alpha/HLA gene combinations are the same.

 

The endometrial immune system is programmed to accept embryos with different DQ alpha/HLA gene combinations than its own. This is known as “alloimmune recognition.” So, if the man shares a similar DQ alpha/HLA gene combination with the woman, and his sperm creates an embryo that tries  to implant , her endometrial immune system will see the embryo’s DQ alpha/HLA gene as “too similar” to its own and assume it is a foreign body.

 

Usually, this will lead to NK/T cell activation, the overproduction of TH-1 cytokines, and reproductive failure (i.e., infertility, and pregnancy loss). The severity with which this occurs is an important determinant of whether total implantation failure will occur or whether there would remain enough residual trophoblastic activity that would allow the pregnancy to limp along until the nutritional supply can no longer meet the demands of the pregnancy, at which point pregnancy loss occurs.

 In cases of paternal-maternal DQ alpha/HLA matching, it will often take several pregnancies for NK cell activation to build to the point that women with alloimmune implantation dysfunction will present with clinical evidence of implantation dysfunction. Sometimes it starts off with one or two live births, whereupon NK/T cell activity starts to build, leading to one or more early miscarriages. Eventually the NK/T cell activation is so high that subsequent pregnancies can be lost before the woman is even aware that she was pregnant at all. At this point, she is often diagnosed with secondary, “unexplained” infertility and/or “unexplained” IVF failure.

 

Alloimmune Implantation Dysfunction is diagnosed by testing the blood of both the male and female partners for matching DQ alpha genes and NK/T cell activation.

 

There are two types of DQ alpha/HLA genetic matching: 

  • Partial DQ alpha/HLA genetic matching: Couples who share only one DQ alpha/HLA gene are considered to have a “partial match.” If NK cell activation is also present, this partial match puts the couple at a disadvantage for IVF success. However, it’s important to note that DQ alpha/HLA matching, whether partial or total, does not cause IID without associated NK cell activation. Treatment for partial DQ alpha/HLA match with NK cell activation involves IL infusion and oral prednisone as adjunct therapy. IL infusion is repeated every 2-4 weeks after pregnancy is confirmed and continued until the 24th week of gestation. In these cases, only one embryo is transferred at a time to minimize the risk of NK cell activation.
  • Total (Complete) Alloimmune Genetic Matching:A total alloimmune match occurs when the husband’s DQ alpha genotype matches both that of the partner. Although rare, this total match along with NK cell activation significantly reduces the chance of a viable pregnancy resulting in a live birth at term. In some cases, the use of a gestational surrogate may be necessary.

It should be emphasized that poor embryo quality is not always the main cause of reproductive dysfunction and that the complex interaction between embryonic cells and the lining of the uterus  plays a critical role in successful implantation. Women with personal or family histories of autoimmune disease or endometriosis and those with unexplained (often repeated) IVF failure or recurrent pregnancy loss, often have immunologic implantation dysfunction (IID as the underlying cause . For such women, it is important to understand how IID leads to reproductive failure and how selective treatment options such as intralipid (IL), corticosteroid and heparinoid therapy, can dramatically  improve reproductive outcomes. Finally, there is real hope that proper identification and management of IID can  significantly improve the chance of successful reproduction and ultimately contribute to better quality of life after birth.

 __________________________________________________________________________________

PLEASE SHARE THIS WITH OTHERS AND HELP SPREAD THE WORD!!

 

Herewith are  online links to 2  E-books recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

  1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) ; https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

 

  1. Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link ;https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

 

I invite you to visit my very recently launched “Podcast”,  “HAVE A BABY” on RUMBLE;   https://rumble.com/c/c-3304480

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com\

 

Name: Vilma C

I hope you can advise me on the situation below. I had Pregmune testing completed in January 2023. It showed my husband and I have DQ alpha match: DQ Alpha – full match, DQ Beta – partial match, HLA-DRB1 – partial match, HLA-DRB3/4/5 – partial match.
I also had the Receptiva Dx test done, which came back at 3.8, which prompted me to get a laparoscopy in January 2023. Dr. exercised stage 1-2 endo.
I had 2 transfers of day 3 embryos (2 & 4 embryos) post lap done while using neupogen. Ended in nothing. Switched clinics. New RE dismissed the need of neupogen or any other immune therapy. First transfer was 1 day 3 embryo. I got a chemical!! It was short, but for the first time since my hubs & I are together (3yr now), we saw 2 lines. Next transfer of 3 day 3s failed. We went back to IVF clinic #1, had a fresh transfer of 3 blasts – failed.
I feel like it is more than coincidence that the only time I had a positive pregnancy test was after the transfer of 1 embryo.
My progesterone, estrogen, lining were always on point, lining converted, etc.
In November 2023 I re-did the receptiva DX test. It came back at 3.6. That’s 10 months post lap! This prompted me to investigate possible adenomyosis, and or return of endometriosis. I had an MRI read by highly recommended specialist, everything looked normal except “thickening of uterosacral ligaments”.
We also thawed, cultured and tested our remaining day 3 embryos. We have 2 euploid embryos. Which obviously are very precious.

What to do next? What is, in your opinion, the bigger reason for failed transfers (of course embryos were not tested, but out of 6 transfers, 15 embryos total, only 1 chemical? They could not have been all bad):
DQ Alpha match or positive receptiva post endo removing surgery?

To address positive receptiva I was recommended to go on lupron & letrozole suppression for 2 months. I really do not want to do that, but if it’s NEEDED, I will.
I do have a problem with Receptiva, because the creators of this test, never ever had done a study on the BCL6 overexpression post lap.

But maybe our issues are not because of Positive Receptiva? Maybe the lack of implantation is due to the DQ Alpha match? Maybe I should try another ER, do a fresh transfer of 1 blast (PGT test the rest) while taking neupogen? Should I be taking prednisone? If yes, how much?

Realistically, what are the chances of us having a successful pregnancy with matches below?
Should we just fast-track to surrogate?
Thank you

Answer:

From your description, it certainly sounds as if your failures are due to an implantation dysfunction…likely, an immunologic implantation dysfrunction (IID). If so, then you MUST have a concommitant natural killer cell activation (NKa). Even though endometriosis can result in an autoimmune IID, and a matchibng D alpha can result in an alloimmune IID, in order to provoke implantation dysfunction, in botb cases there would have to be NKa+.

Autoimmune IID is relatively easy to counter with appropriate immunotherapy . Alloimmune IID is much more difficult to treat effectively. However,  if you are NKa+ and both you and your husband share a “Total match”; the likelihood of successful IVF with the transfer of embryos derived from your husband’s sperm is in my opinion. EXTREMELY UNLIKELY. Remember, matching DQ alpha’s alone do not result in IID. There hast o be NKa+_as well to result in an IID. The only reliable way to propagate a viable pregnancy with euploid embryos in such a circumstance would, in my opinion, require use of a gestational Surrogate. Nothing else will work. If you wanted to carry a baby and you have NKa+, you would need to use a sperm donor who does not share DQ alpha similarities with you and on top of this, receive immunotherapy with intralipid and steroids prior to, during and after the ET (see below). The endometriosis is relatively inconsequential, if this is indeed a total alloimmune IID.

I think we should talk. Please contact my assistant, Patti Converse at 702-533-2691 and set up an online consultation with me to discuss.

Geoff Sher

_______________________________________________________________________________

IVF FAILURE WITH “NORMAL” EMBRYOS: EXAMINING AND ADDRESSING  ANATOMICAL AND IMMUNOLOGIC CAUSES.

Geoffrey Sher M

Implantation dysfunction is often overlooked as a significant reason for IVF failure. This is especially true when IVF failure is unexplained, or when there are recurring pregnancy losses or underlying issues with the uterus, such as endo-uterine surface lesions, thin uterine lining (endometrium), or immunological factors.

IVF success rates have been improving in the past decade. Currently, in the United States, the average live birth rate per embryo transfer for women under 40 years old using their own eggs is about 2:5 per woman undergoing embryo transfer. However, there is a wide range of success rates among different IVF programs, varying from 20% to almost 50%. Based on these statistics, most women in the United States need to undergo two or more IVF-embryo transfer attempts to have a baby. Many IVF practitioners in the United States attribute the differences in success rates to variations in expertise among embryology laboratories, but this is not entirely accurate. Other factors, such as differences in patient selection, the failure to develop personalized protocols for ovarian stimulation, and the neglect of infectious, anatomical, and immunological factors that affect embryo implantation, are equally important.

Approximately 80% of IVF failures occur due to “embryo incompetency,” mainly caused by ( irregularities in chromosome number (aneuploidy), which is often related to the advancing age of the woman, diminished ovarian reserve ( DOR) but can also be influenced by the ovarian stimulation protocol chosen, and sperm dysfunction (male infertility). However, in around 20% of cases with dysfunction, failure is caused by problems with embryo implantation.

This section will focus on embryo implantation dysfunction and IVF failure which in the vast majority of cases is caused by:

  1. 1. Anatomical irregularities of the inner uterine surface:
  2. a) Surface lesions such as polyps/fibroids/ scar tissue
  3. b)endometrial thickness
  4.  
  5. 2. Immunologic Implantation Dysfunction ( IID)lesions
  6. a)Autoimmune IID
  7. b) Alloimmune IID

  1. ANATOMICAL IMPLANTATION DYSFUNCTION
  2. a) Surface lesions such as polyps/fibroids/ scar tissue

When there are problems with the structure of the uterus, it can lead to difficulties in getting pregnant. While uterine fibroids usually don’t cause infertility, they can affect fertility when they distort the uterine cavity or protrude through the lining. Even small fibroids located just beneath the lining and protruding into the cavity can decrease the chances of the embryo attaching. Multiple fibroids within the uterine wall that encroach upon the cavity can disrupt blood flow, impair estrogen delivery, and prevent proper thickening of the lining. These issues can be identified through ultrasound during the menstrual cycle’s proliferative phase. Any lesion on the uterine surface, such as submucous fibroids, adhesions, endometrial polyps, or placental polyps, can interfere with implantation by causing a local inflammatory response similar to the effect of an intrauterine contraceptive device (IUD).

Clearly, even small uterine lesions can have a negative impact on implantation. Considering the high costs and emotional toll associated with in vitro fertilization (IVF) and related procedures, it is reasonable to perform diagnostic tests like hysterosalpingography (HSG), fluid ultrasound examination (hysterosonogram), or hysteroscopy before starting IVF. Uterine lesions that can affect implantation often require surgical intervention. In most cases, procedures like dilatation and curettage (D&C) or hysteroscopic resection are sufficient. Rarely a laparotomy may be needed. Such interventions often lead to an improvement in the response of the uterine lining.

Hysterosonogram( HSN/saline ultrasound) is a procedure where a sterile saline solution is injected into the uterus through the cervix using a catheter. Vaginal ultrasound is then used to examine the fluid-filled cavity for any irregularities that might indicate surface lesions like polyps, fibroid tumors, scarring, or a septum. When performed by an expert, HSN is highly effective in detecting even the smallest lesions and can supplant hysteroscopy in certain cases. HSN is less expensive, less invasive/traumatic, and equally effective as hysteroscopy. The only drawback is that if a lesion is found, hysteroscopy may still be needed for treatment.

Hysteroscopy is a diagnostic procedure performed in an office setting with minimal discomfort to the patient. It involves inserting a thin, lighted instrument called a hysteroscope through the vagina and cervix into the uterus to examine the uterine cavity. Normal saline is used to distend the uterus during the procedure. Like HSN, hysteroscopy allows for direct visualization of the inside of the uterus to identify defects that could interfere with implantation. We have observed that around one in eight IVF candidates have lesions that need attention before undergoing IVF to optimize the chances of success. I strongly recommend that all patients undergo therapeutic surgery, usually hysteroscopy, to correct any identified issues before proceeding with IVF. Depending on the severity and nature of the problem, hysteroscopy may require general anesthesia and should be performed in a surgical facility equipped for laparotomy if necessary.

  1. b) Thickness of the uterine lining (endometrium)

As far back as In 1989, I and my team made an important discovery about using ultrasound to assess the thickness of the endometrium during the late proliferative phase of both “ natural” and hormone-stimulated cycles. The assessment helped predict the chances of conception. We found that an ideal thickness of over 9mm at the time of ovulation , egg retrieval or with the commencement of progesterone therapy in embryo recipient cycles ( e.g., IVF with egg donation, gestational, surrogacy and embryo adoption) was associated with optimal implantation rates, while an endometrial thickness of less than 8 mm was associated with failure to implant or early pregnancy loss in the vast majority of cases. An endometrium measuring <8mm was almost invariably associated with failure to implant or early pregnancy loss in the while an endometrium measuring 8 to 9 mm was regarded as being intermediate, and while pregnancies did occur in this range, the rates were only slightly lower than with an optimal lining of 9 mm

A “poor” uterine lining typically occurs when the innermost layer of the endometrium (basal or germinal endometrium) is unable to respond to estrogen by developing a thick enough outer “functional” layer to support successful embryo implantation and placental development. The “functional” layer, which accounts for two-thirds of the total endometrial thickness, is shed during menstruation if pregnancy does not occur.

The main causes of a poor uterine lining are:

  1. Damage to the basal endometrium due to:
    • Inflammation of the endometrium (endometritis), often resulting from retained products of conception after abortion, miscarriage, or childbirth.
    • Surgical trauma caused by aggressive dilatation and curettage (D&C).
  1. Insensitivity of the basal endometrium to estrogen due to:
    • Prolonged (back to back) use of clomiphene citrate for ovarian stimulation or…
    • Prenatal exposure to diethylstilbestrol (DES), a drug given to prevent miscarriage in the 1960s.
  1. Overexposure of the uterine lining to male hormones produced by the ovaries or administered during ovarian stimulation (primarily testosterone):
    • Older women, women with DOR (poor responders), and women with polycystic ovarian syndrome (PCOS) often have increased biological activity of luteinizing hormone (LH), leading to testosterone overproduction by the ovarian connective tissue (stroma/theca). This effect can be further amplified when certain ovarian stimulation protocols were high doses of menotropins ( e.g., Menopur) are used.
  1. Reduced blood flow to the basal endometrium caused by:
    • Multiple uterine fibroids, especially if they are located beneath the endometrium (submucosal).
    • Uterine adenomyosis, which involves extensive abnormal invasion of endometrial glands into the uterine muscle.

In 1996 I introduced the Vaginal administration of Sildenafil (Viagra) to improve endometrial thickening. The selective administration of Sildenafil has shown great promise in improving uterine blood flow and increasing endometrial thickening in cases of thin endometrial linings. When administered vaginally, it is quickly absorbed and reaches high concentrations in the uterine blood system, diluting as it enters the systemic circulation. This method has been found to have minimal systemic side effects. However, it is important to note that Viagra may not be effective in all cases, as some cases of thin uterine linings may involve permanent damage to the basal endometrium, rendering it unresponsive to estrogen.

Severe endometrial damage leading to poor responsiveness to estrogen can occur in various situations. These include post-pregnancy endometritis (inflammation after childbirth), chronic granulomatous inflammation caused by uterine tuberculosis (rare in the United States), and significant surgical injury to the basal endometrium (which can happen after aggressive D&C procedures).

 

  1. IMMUNOLOGIC IMPLANTATION DYSFUNCTION (IID)

There is a growing recognition that problems with the immune function in the uterus can lead to embryo implantation dysfunction. The failure of proper immunologic interaction during implantation has been implicated as a cause of recurrent miscarriage, late pregnancy fetal loss, IVF failure, and infertility. Some immunologic factors that may contribute to these issues include antiphospholipid antibodies (APA), antithyroid antibodies (ATA) , and activated natural killer cells (NKa).

  • Activated natural Killer Cells (NKa):

During ovulation and early pregnancy, the uterine lining is frequented by NK cells and T-cells, which together make up more than 80% of the immune cells in the uterine lining. These cells travel from the bone marrow to the endometrium where they proliferate under hormonal regulation. When exposed to progesterone, they produce TH-1 and TH-2 cytokines. TH-2 cytokines help the trophoblast (embryo’s “root system”) to penetrate the uterine lining, while TH-1 cytokines induce apoptosis (cell suicide), limiting placental development to the inner part of the uterus. The balance between TH1 and TH-2 cytokines is crucial for optimal placental development. NK cells and T-cells contribute to cytokine production. Excessive TH-1 cytokine production is harmful to the trophoblast and endometrial cells, leading to programmed cell death and ultimately to implantation failure. Functional NK cells reach their highest concentration in the endometrium around 6-7days after ovulation or exposure to progesterone, which coincides with the time of embryo implantation. It’s important to note that measuring the concentration of blood NK cells doesn’t reflect NK cell activation (NKa). The activation of NK cells is what matters. In certain conditions like endometriosis, the blood concentration of NK cells may be below normal, but NK cell activation is significantly increased.

There are several laboratory methods to assess NK cell activation (cytotoxicity), including immunohistochemical assessment of uterine NK cells and measuring TH-1 cytokines in the uterus or blood. However, the K-562 target cell blood test remains the gold standard. In this test, NK cells isolated from a woman’s blood are incubated with specific “target cells,” and the percentage of killed target cells is quantified. More than 12% killing indicates a level of NK cell activation that usually requires treatment. Currently, there are only a few Reproductive Immunology Reference Laboratories in the USA capable of reliably performing the K-562 target cell test.

There is a common misconception that adding IL (intralipid) or Intravenous gammaglobulin (IVIg) to NK cells can immediately downregulate NK cell activity. However, neither IL and IVIg cannot significantly suppress already activated NK cells. They are believed to work by regulating NK cell progenitors, which then produce downregulated NK cells. To assess the therapeutic effect, IL/IVIg infusion should be done about 14 days before embryos are transferred to the uterus to ensure a sufficient number of normal functional NK cells are present at the implantation site during embryo transfer. Failure to recognize this reality has led to the erroneous demand from IVF doctors for Reproductive Immunology Reference Laboratories to report on NK cell activity before and immediately after exposure to IVIg or IL at different concentrations. However, since already activated NK cells cannot be deactivated in the laboratory, assessing NKa suppression in this way has little clinical benefit. Even if blood is drawn 10-14 days after IL/IVIg treatment, it would take another 10-14 days to receive the results, which would be too late to be practically advantageous.

  • Antiphospholipid Antibodies:

Many women who struggle with IVF failure or recurrent pregnancy loss, as well as those with a personal or family history of autoimmune diseases like lupus erythematosus, rheumatoid arthritis, scleroderma, and dermatomyositis, often test positive for antiphospholipid antibodies (APAs). Over 30 years ago, I proposed a treatment for women with positive APA tests. This involved using a low dose of heparin to improve the success of IVF implantation and increase birth rates. Research indicated that heparin could prevent APAs from affecting the embryo’s “root system” ( the trophoblast), thus enhancing implantation. We later discovered that this therapy only benefits women whose APAs target specific phospholipids (phosphatidylethanolamine and phosphatidylserine). Nowadays, longer-acting low molecular weight heparinoids like Lovenox and Clexane have replaced heparin.

  • Antithyroid Antibodies ( thyroid peroxidase  -TPO and antithyroglobulin antibodies (TGa)

Between 2% and 5% of women of the childbearing age have reduced thyroid hormone activity (hypothyroidism). Women with hypothyroidism often manifest with reproductive failure i.e., infertility, unexplained (often repeated) IVF failure, or recurrent pregnancy loss (RPL). The condition is 5-10 times more common in women than in men. In most cases hypothyroidism is caused by damage to the thyroid gland resulting from thyroid autoimmunity (Hashimoto’s disease) caused by damage done to the thyroid gland by antithyroglobulin and antimicrosomal auto-antibodies. The increased prevalence of hypothyroidism and thyroid autoimmunity (TAI) in women is likely the result of a combination of genetic factors, estrogen-related effects, and chromosome X abnormalities. This having been said, there is significantly increased incidence of thyroid antibodies in non-pregnant women with a history of infertility and recurrent pregnancy loss and thyroid antibodies can be present asymptomatically in women without them manifesting with overt clinical or endocrinologic evidence of thyroid disease. In addition, these antibodies may persist in women who have suffered from hyper- or hypothyroidism even after normalization of their thyroid function by appropriate pharmacological treatment. The manifestations of reproductive dysfunction thus seem to be linked more to the presence of thyroid autoimmunity (TAI) than to clinical existence of hypothyroidism and treatment of the latter does not routinely result in a subsequent improvement in reproductive performance. It follows that if antithyroid autoantibodies are associated with reproductive dysfunction they may serve as useful markers for predicting poor outcome in patients undergoing assisted reproductive technologies. Some years back, I reported on the fact that 47% of women who harbor thyroid autoantibodies, regardless of the absence or presence of clinical hypothyroidism, have activated uterine natural killer cells (NKa) cells and cytotoxic lymphocytes (CTL) and that such women often present with reproductive dysfunction. We demonstrated that appropriate immunotherapy with IVIG or intralipid (IL) and steroids subsequently often results in a significant improvement in reproductive performance in such cases.

 

Almost 50% of women with antithyroid antibodies do not have activated cytotoxic T lymphocytes (CTL) or natural killer cells (NK cells). This suggests that the antibodies themselves may not be the direct cause of reproductive dysfunction. Instead, the activation of CTL and NK cells, which occurs in about half of the cases with thyroid autoimmunity (TAI), is likely an accompanying phenomenon that damages the early “root system” (trophoblast) of the embryo during implantation.

Treating women who have both antithyroid antibodies and activated NK cells/CTL with intralipid (IL) and steroids improves their chances of successful reproduction. However, women with antithyroid antibodies who do not have activated NK cells/CTL do not require this treatment.

  • Treatment Options for IID:
  1. Intralipid (IL) Therapy: IL is a mixture of soybean lipid droplets in water, primarily used for providing nutrition. When administered intravenously, IL supplies essential fatty acids that can activate certain receptors in NK cells, reducing their cytotoxic activity and enhancing implantation. IL, combined with corticosteroids, suppresses the overproduction of pro-inflammatory cytokines by NK cells, improving reproductive outcomes. IL is cost-effective and has fewer side effects compared to other treatments like IVIg.
  2. Intravenous immunoglobulin-G (IVIg) Therapy:In the past, IVIg was used to down-regulate activated NK cells. However, concerns about viral infections and the high cost led to a decline in its use. IVIg can be effective, but IL has become a more favorable and affordable alternative.
  3. Corticosteroid Therapy: Corticosteroids, such as prednisone and dexamethasone, are commonly used in IVF treatment. They have an immunomodulatory effect and reduce TH-1 cytokine production by CTL. When combined with IL or IVIg, corticosteroids enhance the implantation process. Treatment typically starts 10-14 days before embryo transfer and continues until the 10th week of pregnancy.
  4. Heparinoid Therapy: Low molecular weight heparin (Clexane, Lovenox)can improve IVF success rates in women with antiphospholipid antibodies (APAs) and may prevent pregnancy loss in certain thrombophilias when used during treatment. It is administered subcutaneously once daily from the start of ovarian stimulation.
  5. TH-1 Cytokine Blockers (Enbrel, Humira):TH-1 cytokine blockers have limited effectiveness in the IVF setting and, in my opinion, no compelling evidence supports their use. They may have a role in treating threatened miscarriage caused by CTL/NK cell activation, but not for IVF treatment. TH-1 cytokines are needed for cellular response, during the early phase of implantation, so completely blocking them could hinder normal implantation.
  6. Baby Aspirin and IVF:Baby aspirin doesn’t offer much value in treating implantation dysfunction (IID) and may even reduce the chance of success. This is because aspirin thins the blood and increases the risk of bleeding, which can complicate procedures like egg retrieval or embryo transfer during IVF, potentially compromising its success.
  7. Leukocyte Immunization Therapy (LIT):LIT involves injecting the male partner’s lymphocytes into the mother to improve the recognition of the embryo as “self” and prevent rejection. LIT can up-regulate Treg cells and down-regulate NK cell activation, improving the balance of TH-1 and TH-2 cells in the uterus. However, the same benefits can be achieved through IL (Intralipid) therapy combined with corticosteroids. IL is more cost-effective, and the use of LIT is prohibited by law in the USA.

Types of Immunologic Implantation Dysfunction (IID) and NK Cell Activation:

  1. Autoimmune Implantation Dysfunction: Women with a personal or family history of autoimmune conditions like Rheumatoid arthritis, Lupus Erythematosus, thyroid autoimmune disease (Hashimoto’s disease and thyrotoxicosis), and endometriosis (in about one-third of cases) may experience autoimmune IID. However, autoimmune IID can also occur without any personal or family history of autoimmune diseases. Treatment for NK cell activation in IVF cases complicated by autoimmune IID involves a combination of daily oral dexamethasone from the start of ovarian stimulation until the 10th week of pregnancy, along with 20% intralipid (IL) infusion 10 days to 2 weeks before embryo transfer. With this treatment, the chance of a viable pregnancy occurring within two completed embryo transfer  attempts is approximately 70% for women <40 years old who have  normal ovarian reserve.

  2. Alloimmune Implantation Dysfunction:NK cell activation occurs when the uterus is exposed to an embryo that shares certain genotypic (HLA/DQ alpha) similarities with the embryo recipient. Humans have 23 pairs of chromosomes: one set from the sperm and one set from the egg that created us. Our sixth pair of chromosomes each contain DQ alpha genes. Again, one of these genes is from the sperm and one is from the egg that created us.

Like the genes for eye color, DQ alpha/HLA gene combinations differ between people. Thus, the male (whose  sperm created an embryo is likely to have different DQ alpha/HLA gene combinations than the potential mother . However, there are rare situations in which the male and the female partners have  DQ-alpha/HLA gene combinations are the same.

 

The endometrial immune system is programmed to accept embryos with different DQ alpha/HLA gene combinations than its own. This is known as “alloimmune recognition.” So, if the man shares a similar DQ alpha/HLA gene combination with the woman, and his sperm creates an embryo that tries  to implant , her endometrial immune system will see the embryo’s DQ alpha/HLA gene as “too similar” to its own and assume it is a foreign body.

 

Usually, this will lead to NK/T cell activation, the overproduction of TH-1 cytokines, and reproductive failure (i.e., infertility, and pregnancy loss). The severity with which this occurs is an important determinant of whether total implantation failure will occur or whether there would remain enough residual trophoblastic activity that would allow the pregnancy to limp along until the nutritional supply can no longer meet the demands of the pregnancy, at which point pregnancy loss occurs.

 

In cases of paternal-maternal DQ alpha/HLA matching, it will often take several pregnancies for NK cell activation to build to the point that women with alloimmune implantation dysfunction will present with clinical evidence of implantation dysfunction. Sometimes it starts off with one or two live births, whereupon NK/T cell activity starts to build, leading to one or more early miscarriages. Eventually the NK/T cell activation is so high that subsequent pregnancies can be lost before the woman is even aware that she was pregnant at all. At this point, she is often diagnosed with secondary, “unexplained” infertility and/or “unexplained” IVF failure.

 

Alloimmune Implantation Dysfunction is diagnosed by testing the blood of both the male and female partners for matching DQ alpha genes and NK/T cell activation.

 

There are two types of DQ alpha/HLA genetic matching: 

  • Partial DQ alpha/HLA genetic matching: Couples who share only one DQ alpha/HLA gene are considered to have a “partial match.” If NK cell activation is also present, this partial match puts the couple at a disadvantage for IVF success. However, it’s important to note that DQ alpha/HLA matching, whether partial or total, does not cause IID without associated NK cell activation. Treatment for partial DQ alpha/HLA match with NK cell activation involves IL infusion and oral prednisone as adjunct therapy. IL infusion is repeated every 2-4 weeks after pregnancy is confirmed and continued until the 24th week of gestation. In these cases, only one embryo is transferred at a time to minimize the risk of NK cell activation.
  • Total (Complete) Alloimmune Genetic Matching:A total alloimmune match occurs when the husband’s DQ alpha genotype matches both that of the partner. Although rare, this total match along with NK cell activation significantly reduces the chance of a viable pregnancy resulting in a live birth at term. In some cases, the use of a gestational surrogate may be necessary.

It should be emphasized that poor embryo quality is not always the main cause of reproductive dysfunction and that the complex interaction between embryonic cells and the lining of the uterus  plays a critical role in successful implantation. Women with personal or family histories of autoimmune disease or endometriosis and those with unexplained (often repeated) IVF failure or recurrent pregnancy loss, often have immunologic implantation dysfunction (IID as the underlying cause . For such women, it is important to understand how IID leads to reproductive failure and how selective treatment options such as intralipid (IL), corticosteroid and heparinoid therapy, can dramatically  improve reproductive outcomes. Finally, there is real hope that proper identification and management of IID can  significantly improve the chance of successful reproduction and ultimately contribute to better quality of life after birth.

 ____________________________________________________________________________________

PLEASE SHARE THIS WITH OTHERS AND HELP SPREAD THE WORD!!

 

Herewith are  online links to 2  E-books recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

  1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) ; https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

 

  1. Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link ;https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

 

I invite you to visit my very recently launched “Podcast”,  “HAVE A BABY” on RUMBLE;   https://rumble.com/c/c-3304480

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com\

 

 

 

Name: Ioana I

Hi! I’am 42 and I did the first stimulation for IVF. I obtained 2 embryos that I tested. I don’t know what this result means, are they viable? Which one is good? First has these anomalies +8p, +12, +22, the second +9q, -19. Thank YOU!

Answer:

In my opinion, they are not viable!

Geoff Sher

Name: Krista W

I have a unicornuate uterus. I have had three miscarriages back to back. All of which end at 5 weeks. The second resulted in a D&C due to the embryo not growing. I’m currently going through the same issue. My levels are continuously rising at a great rate. What is missing that my embryo will not develop as it should

Answer:

When it comes to reproduction, humans face challenges compared to other mammals. A significant number of fertilized eggs in humans do not result in live births, with up to 75% failing to develop, and around 30% of pregnancies ending within the first 10 weeks  (first trimester). Recurrent pregnancy loss (RPL) refers to two or more consecutive failed pregnancies, which is relatively rare, affecting less than 5% of women for two losses and only 1% for three or more losses. Understanding the causes of pregnancy loss and finding solutions is crucial for those affected. This article aims to explain the different types of pregnancy loss and shed light on potential causes.

Types of Pregnancy Loss: Pregnancy loss can occur at various stages, leading to different classifications:

  1. Early Pregnancy Loss: Also known as a miscarriage, this typically happens in the first trimester. Early pregnancy losses are usually sporadic, not recurring. In over 70% of cases, these losses are due to chromosomal abnormalities in the embryo, where there are more or fewer than the normal 46 chromosomes. Therefore, they are not likely to be repetitive.
  2. Late Pregnancy Loss: Late pregnancy losses occur after the first trimester (12th week) and are less common (1% of pregnancies). They often result from anatomical abnormalities in the uterus or cervix. Weakness in the cervix, known as cervical incompetence, is a frequent cause. Other factors include developmental abnormalities of the uterus, uterine fibroid tumors, intrauterine growth retardation, placental abruption, premature rupture of membranes, and premature labor.

Causes of Recurrent Pregnancy Loss (RPL): Recurrent pregnancy loss refers to multiple consecutive miscarriages. While chromosomal abnormalities are a leading cause of sporadic early pregnancy losses, RPL cases are mostly attributed to non-chromosomal factors. Some possible causes include:

  1. Uterine Environment Problems: Issues with the uterine environment can prevent a normal embryo from properly implanting and developing. These problems may include inadequate thickening of the uterine lining, irregularities in the uterine cavity (such as polyps, fibroid tumors, scarring, or adenomyosis), hormonal imbalances (progesterone deficiency or luteal phase defects), and deficient blood flow to the uterine lining.
  2. Immunologic Implantation Dysfunction (IID): IID is a significant cause of RPL, contributing to 75% of cases where chromosomally normal embryos fail to implant. It involves the immune system’s response to pregnancy, which can interfere with successful implantation.
  3. Blood Clotting Disorders: Thrombophilia, a hereditary clotting disorder, can disrupt the blood supply to the developing fetus, leading to pregnancy loss.
  4. Genetic and Structural Abnormalities: Genetic abnormalities are rare causes of RPL, while structural chromosomal abnormalities occur infrequently (1%). Unbalanced translocation, where part of one chromosome detaches and fuses with another, can lead to pregnancy loss. Studies also suggest that damaged sperm DNA can negatively impact fetal development and result in miscarriage.

 

IMMUNOLOGIC IMPLANTATION DYSFUNCTION AND RPL:

 

Autoimmune IID: Here an immunologic reaction is produced by the individual to his/her body’s own cellular components. The most common antibodies that form in such situations are APA and antithyroid antibodies (ATA). But it is only when specialized immune cells in the uterine lining, known as cytotoxic lymphocytes (CTL) and natural killer (NK) cells, become activated and start to release an excessive/disproportionate amount of TH-1 cytokines that attack the root system of the embryo, that implantation potential is jeopardized. Diagnosis of such activation requires highly specialized blood test for cytokine activity that can only be performed by a handful of reproductive immunology reference laboratories in the United States. Alloimmune IID, (i.e., where antibodies are formed against antigens derived from another member of the same species), is believed to be a common immunologic cause of recurrent pregnancy loss. Autoimmune IID is often genetically transmitted. Thus, it should not be surprising to learn that it is more likely to exist in women who have a family (or personal) history of primary autoimmune diseases such as lupus erythematosus (LE), scleroderma or autoimmune hypothyroidism (Hashimoto’s disease), autoimmune hyperthyroidism (Grave’s disease), rheumatoid arthritis, etc. Reactionary (secondary) autoimmunity can occur in conjunction with any medical condition associated with widespread tissue damage. One such gynecologic condition is endometriosis. Since autoimmune IID is usually associated with activated NK and T-cells from the outset, it usually results in such very early destruction of the embryo’s root system that the patient does not even recognize that she is pregnant. Accordingly, the condition usually presents as “unexplained infertility” or “unexplained IVF failure” rather than as a miscarriage. Alloimmune IID, on the other hand, usually starts off presenting as unexplained miscarriages (often manifesting as RPL). Over time as NK/T cell activation builds and eventually becomes permanently established the patient often goes from RPL to “infertility” due to failed implantation. RPL is more commonly the consequence of alloimmune rather than autoimmune implantation dysfunction. However, regardless, of whether miscarriage is due to autoimmune or alloimmune implantation dysfunction the final blow to the pregnancy is the result of activated natural killer cells (NKa) and cytotoxic lymphocytes (CTL B) in the uterine lining that damage the developing embryo’s “root system” (trophoblast) so that it can no longer sustain the growing conceptus. This having been said, it is important to note that autoimmune IID is readily amenable to reversal through timely, appropriately administered, selective immunotherapy, and alloimmune IID is not. It is much more difficult to treat successfully, even with the use of immunotherapy. In fact, in some cases the only solution will be to revert to selective immunotherapy plus using donor sperm (provided there is no “match” between the donor’s DQa profile and that of the female recipient) or alternatively to resort to gestational surrogacy.

 

DIAGNOSING THE CAUSE OF RPL.

In the past, women who miscarried were not evaluated thoroughly until they had lost several pregnancies in a row. This was because sporadic miscarriages are most commonly the result of embryo numerical chromosomal irregularities (aneuploidy) and thus not treatable. However, a consecutive series of miscarriages points to a repetitive cause that is non-chromosomal and is potentially remediable. Since RPL is most commonly due to a uterine pathology or immunologic causes that are potentially treatable, it follows that early chromosomal evaluation of products of conception could point to a potentially treatable situation. Thus, I strongly recommend that such testing be done in most cases of miscarriage. Doing so will avoid a great deal of unnecessary heartache for many patients. Establishing the correct diagnosis is the first step toward determining effective treatment for couples with RPL. It results from a problem within the pregnancy itself or within the uterine environment where the pregnancy implants and grows. Diagnostic tests useful in identifying individuals at greater risk for a problem within the pregnancy itself include Karyotyping (chromosome analysis) both prospective parents Assessment of the karyotype of products of conception derived from previous miscarriage specimens Ultrasound examination of the uterine cavity after sterile water is injected or sonohysterogram, fluid ultrasound, etc.) Hysterosalpingogram (dye X-ray test) Hysteroscopic evaluation of the uterine cavity Full hormonal evaluation (estrogen, progesterone, adrenal steroid hormones, thyroid hormones, FSH/LH, etc.) Immunologic testing to include Antiphospholipid antibody (APA) panel Antinuclear antibody (ANA) panel Antithyroid antibody panel (i.e., antithyroglobulin and antimicrosomal antibodies) Reproductive immunophenotype Natural killer cell activity (NKa) assay (i.e., K562 target cell test) Alloimmune testing of both the male and female partners

 

TREATMENT OF RPL

  • Treatment for Anatomic Abnormalities of the Uterus: 

This involves restoration through removal of local lesions such as fibroids, scar tissue, and endometrial polyps or timely insertion of a cervical cerclage (a stitch placed around the neck of the weakened cervix) or the excision of a uterine septum when indicated. Treatment of Thin Uterine Lining: A thin uterine lining has been shown to correlate with compromised pregnancy outcome. Often this will be associated with reduced blood flow to the endometrium. Such decreased blood flow to the uterus can be improved through treatment with sildenafil and possibly aspirin. sildenafil (Viagra) Therapy. Viagra has been used successfully to increase uterine blood flow. However, to be effective it must be administered starting as soon as the period stops up until the day of ovulation and it must be administered vaginally (not orally). Viagra in the form of vaginal suppositories given in the dosage of 25 mg four times a day has been shown to increase uterine blood flow as well as thickness of the uterine lining. To date, we have seen significant improvement of the thickness of the uterine lining in about 70% of women treated. Successful pregnancy resulted in 42% of women who responded to the Viagra. It should be remembered that most of these women had previously experienced repeated IVF failures. Use of Aspirin: This is an anti-prostaglandin that improves blood flow to the endometrium. It is administered at a dosage of 81 mg orally, daily from the beginning of the cycle until ovulation.

 

Treating Immunologic Implantation Dysfunction with Selective Immunotherapy: 

Modalities such as intralipid (IL), intravenous immunoglobulin-G (IVIG),  heparinoids (Lovenox/Clexane), and corticosteroids (dexamethasone, prednisone, prednisolone) can be used in select cases depending on autoimmune or alloimmune dysfunction. The Use of IVF in the Treatment of RPL In the following circumstances, IVF is the preferred option: When in addition to a history of RPL, another standard indication for IVF (e.g., tubal factor, endometriosis, and male factor infertility) is superimposed and in cases where selective immunotherapy is needed to treat an immunologic implantation dysfunction.  The reason for IVF being a preferred approach when immunotherapy is indicated is that in order to be effective, immunotherapy needs to be initiated well before spontaneous or induced ovulation. Given the fact that the anticipated birthrate per cycle of COS with or without IUI is at best about 15%, it follows that short of IVF, to have even a reasonable chance of a live birth, most women with immunologic causes of RPL would need to undergo immunotherapy repeatedly, over consecutive cycles. Conversely, with IVF, the chance of a successful outcome in a single cycle of treatment is several times greater and, because of the attenuated and concentrated time period required for treatment, IVF is far safer and thus represents a more practicable alternative Since embryo aneuploidy is a common cause of miscarriage, the use of preimplantation genetic screening/ testing (PGS/T), with tests such as next generation gene sequencing (NGS), can provide a valuable diagnostic and therapeutic advantage in cases of RPL. PGS/T requires IVF to provide access to embryos for testing. There are a few cases of intractable alloimmune dysfunction due to absolute DQ alpha gene matching ( where there is a complete genotyping match between the male and female partners) where Gestational Surrogacy or use of donor sperm could represent the only viable recourse, other than abandoning treatment altogether and/or resorting to adoption. Other non-immunologic factors such as an intractably thin uterine lining or severe uterine pathology might also warrant that last resort consideration be given to gestational surrogacy. Conclusion:

 

Understanding the causes of pregnancy loss is crucial for individuals experiencing recurrent miscarriages. While chromosomal abnormalities are a common cause of sporadic early pregnancy losses, other factors such as uterine environment problems, immunologic implantation dysfunction, blood clotting disorders, and genetic or structural abnormalities can contribute to recurrent losses. By identifying the underlying cause, healthcare professionals can provide appropriate interventions and support to improve the chances of a successful pregnancy. The good news is that if a couple with RPL is open to all of the diagnostic and treatment options referred to above, a live birthrate of 70%–80% is ultimately achievable.

 ________________________________________________________________

PLEASE SHARE THIS WITH OTHERS AND HELP SPREAD THE WORD!!

 

Herewith are  online links to 2  E-books recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

  1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) ; https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

 

  1. Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link ;https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

 

I invite you to visit my very recently launched “Podcast”,  “HAVE A BABY” on RUMBLE;   https://rumble.com/c/c-3304480

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com\

 

 

Name: Natalie S

Hi Dr Sher. I had an embryo transfer last Saturday. I rested for 2 days and then went back to the gym on Monday and Tuesday and exercised as normal. This includes weightlifting. I have however been reading that lifting weight can hinder implantation. Do you know if this is the case? Many thanks, Natalie

Answer:

Exercising is not harmful BUT it is not wise to push yourself with over-demanding effort until a diagnosis of pregnancy can be made.Hopefully no harm was done!

Good luck!

Geoff Sher

Name: Carmen N

Good afternoon,

I’m posting in English. Thank you very much for your answer.
Last April my AMH was 0.04, even though I did my first IVF and got two follicles with two embryos. One of them ended up in a 7 week miscarriage and the other one is frozen. I had Pergoveris (225 every two days) and Letrozol.
In October I had a PRP done.
Now, last December, my AMH was also 0.04 and I’ve done 3 IVFS since then, the first time was natural cycle in which the follicle was empty.
Days later, I started taking shots (Meriofert 225 daily and 1 pill of progesterone daily), we did two more rounds in 40 days (I took the shots for all this time) and ended up having 3 follicles the first time, which turned out to be 2 empty and 1 atretic. The second round we got two follicles to puncture but both were atretic eggs.
So, my question is whether this atresiaand empty follicles is because of the bad quality, that is now terrible or due to the treatment/medicine. Should I do another IVF with other drugs or try with the frozen embryo?
Thank you very much.

Answer:

  • “EMPTY FOLLICLE SYNDROME”

Empty Follicle Syndrome” is a misleading term because follicles always contain eggs. However, some eggs may have difficulties detaching and being retrieved. This is more likely to happen when multiple attempts are needed to retrieve an egg from a follicle, indicating the egg may have chromosomal abnormalities.

The hormonal environment created during controlled ovarian stimulation plays a significant role in egg development. In certain cases, follicles may not release their eggs during retrieval, leading to the misconception of “empty” follicles.

This situation is most commonly encountered in older women, those with diminished ovarian reserve (DOR), and women with polycystic ovarian syndrome (PCOS). To address this problem, personalized protocols for controlled ovarian stimulation and careful administration of the hCG trigger shot are important.

The hCG trigger shot is given after optimal ovarian stimulation to initiate the process of reducing the number of chromosomes in the egg. It also helps the egg detach from the follicle’s inner wall. This allows for easier retrieval during the egg retrieval procedure.

Women with increased LH activity, such as older women, those with DOR, and women with PCOS, are more susceptible to the negative effects of LH-induced ovarian testosterone. Excessive LH activity can compromise egg development and increase the chances of chromosomal abnormalities. Medications like clomiphene and Letrozole can stimulate LH release, and certain drugs containing LH or hCG can have negative consequences.

Individualizing the controlled ovarian stimulation protocol, determining the correct dosage and type of hCG trigger, and administering it at the right time are crucial. The recommended dosage of urinary-derived hCG products is 10,000 units, while for recombinant DNA-derived hCG, the optimal dosage is 500 micrograms. A lower dosage of hCG can increase the risk of chromosomal abnormalities in the eggs and negatively impact the outcome of IVF.

Understanding the role of LH activity, the effects of medications on hormone release, and the importance of personalized protocols are vital. By optimizing these factors, the risk of failed egg retrieval and “empty follicle syndrome” can be minimized, improving the chances of successful IVF outcomes.

________________________________________________________________________________

  • ADDRESSING DIMINISHING OVARIAN RESERVE (DOR) IN IVF

Understanding the impact of ovarian reserve on the success of in vitro fertilization (IVF) is crucial when it comes to reproductive health. This article aims to simplify and clarify these concepts, emphasizing their significance in the selection of ovarian stimulation protocols for IVF. By providing you with this information, we hope to shed light on the importance of considering these factors and making informed decisions regarding fertility treatments.

  1. The Role of Eggs in Chromosomal Integrity: In the process of creating a healthy embryo, it is primarily the egg that determines the chromosomal integrity, which is crucial for the embryo’s competency. A competent egg possesses a normal karyotype, increasing the chances of developing into a healthy baby. It’s important to note that not all eggs are competent, and the incidence of irregular chromosome numbers (aneuploidy) increases with age.
  2. Meiosis and Fertilization: Following the initiation of the LH surge or the hCG trigger shot, the egg undergoes a process called meiosis, halving its chromosomes to 23. During this process, a structure called the polar body is expelled from the egg, while the remaining chromosomes are retained. The mature sperm, also undergoing meiosis, contributes 23 chromosomes. Fertilization occurs when these chromosomes combine, resulting in a euploid embryo with 46 chromosomes. Only euploid embryos are competent and capable of developing into healthy babies.
  3. The Significance of Embryo Ploidy: Embryo ploidy, referring to the numerical chromosomal integrity, is a critical factor in determining embryo competency. Aneuploid embryos, which have an irregular number of chromosomes, are often incompetent and unable to propagate healthy pregnancies. Failed nidation, miscarriages, and chromosomal birth defects can be linked to embryo ploidy issues. Both egg and sperm aneuploidy can contribute, but egg aneuploidy is usually the primary cause.
  4. Embryo Development and Competency: Embryos that develop too slowly or too quickly, have abnormal cell counts, contain debris or fragments, or fail to reach the blastocyst stage are often aneuploid and incompetent. Monitoring these developmental aspects can provide valuable insights into embryo competency.
  5. Diminished Ovarian Reserve (DOR): As women advance in their reproductive age, the number of remaining eggs in the ovaries decreases. Diminished ovarian reserve (DOR) occurs when the egg count falls below a certain threshold, making it more challenging to respond to fertility drugs effectively. This condition is often indicated by specific hormone levels, such as elevated FSH and decreased AMH. DOR can affect women over 40, but it can also occur in younger

 

Why IVF should be regarded as treatment of choice for women who have diminished ovarian reserve ( DOR):

Understanding the following factors will go a long way in helping you to make an informed decision and thereby improve the chances of a successful IVF outcome.

  1. Ovarian Reserve: While chronological age plays a vital role in determining the quality of eggs and embryos [there is an increased risk of egg aneuploidy (irregular chromosome number) in eggs,  leading to reduced embryo competency. Additionally, women with declining ovarian reserve (DOR), regardless of their age, are more likely to have aneuploid eggs/embryos. Therefore, it is crucial to address age-related factors and ovarian reserve to enhance IVF success.
  2. Excessive Luteinizing Hormone (LH) and Testosterone Effects: In women with DOR, their ovaries and developing eggs are susceptible to the adverse effects of excessive LH, which stimulates the overproduction of male hormones like testosterone. While some testosterone promotes healthy follicle growth and egg development, an excess of testosterone has a negative impact. Therefore, in both older women or those who (regardless of their age) have DOR, ovarian stimulation protocols that down-regulate LH activity before starting gonadotropins are necessary to improve egg/embryo quality and IVF outcomes.
  3. It is possible to regulate the  decline in egg/embryo competency by tailoring ovarian stimulation protocols. Here are my preferred protocols for women with relatively normal ovarian reserve:
  1. Conventional Long Pituitary Down Regulation Protocol:
  • Begin birth control pills (BCP) early in the cycle for at least 10 days.
  • Three days before stopping BCP, overlap with an agonist like Lupron for three days.
  • Continue daily Lupron until menstruation begins.
  • Conduct ultrasound and blood estradiol measurements to assess ovarian status.
  • Administer FSH-dominant gonadotropin along with Menopur for stimulation.
  • Monitor follicle development through ultrasound and blood estradiol measurements.
  • Trigger egg maturation using hCG injection, followed by egg retrieval.
  1. Agonist/Antagonist Conversion Protocol (A/ACP):
  • Similar to the conventional long down regulation protocol but replace the agonist with a GnRH antagonist from the onset of post-BCP menstruation until the trigger day.
  • Consider adding supplementary human growth hormone (HGH) for women with DOR.
  • Consider using “priming” with estrogen prior to gonadotropin administration
  1. Protocols to Avoid in Women with DOR: Certain ovarian stimulation protocols may not be suitable for women with declining ovarian reserve:
  • Microdose agonist “flare” protocols
  • High dosages of LH-containing fertility drugs such as Menopur
  • Testosterone-based supplementation
  • DHEA supplementation
  • Clomiphene citrate or Letrozole
  • Low-dosage hCG triggering or agonist triggering for women with DOR

 

 

Preimplantation Genetic Screening/Testing for aneuploidy (PGS/PGTA): PGS/PGTA is a valuable tool for identifying chromosomal abnormalities in eggs and embryos. By selecting the most competent (euploid) embryos, PGS/PGTA significantly improves the success of IVF, in women with DOR.

Understanding the impact of declining ovarian reserve on IVF outcomes is essential when making decisions about fertility treatments. Diminished ovarian reserve (DOR) can affect egg quality and increase the likelihood of aneuploid embryos with resultant IVF failure. By considering this factor, you can make informed choices and work closely with fertility specialists to optimize your chances of success. Remember, knowledge is power, and being aware of these aspects empowers you to take control of your reproductive journey.

_____________________________________________________________

PLEASE SHARE THIS WITH OTHERS AND HELP SPREAD THE WORD!!

 

Herewith are  online links to 2  E-books recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

  1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) ; https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

 

  1. Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link ;https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

 

I invite you to visit my very recently launched “Podcast”,  “HAVE A BABY” on RUMBLE;   https://rumble.com/c/c-3304480

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com\

 

 

 

 

Name: Carmen N

Tengo muy muy baja ovárica. He realizado 4 tratamientos FIV, el primero con letrozol y pergoveris (225 cada dos días) en el que obtuvimos 2 ovocitos maduros de dos folículos, llegaron a embrión los dos, implantamos uno pero acabó en aborto a las 7 semanas.
Desde entonces (7 meses más tarde) hemos hecho 1 FIV más en ciclo natural, en la que el folículo estaba vacío. Y dos tratamientos más seguidos (doble fiv) con progesterona y Meriofert 225 diario. El primero, de 3 folículos, 2 vacíos y 1 atresico. Y la última vez de dos folículos, los dos ovocitos atresicos.
Mi pregunta es si estos ovocitos atresicos se debe a que la calidad ha empeorado considerablemente o si ha podido ser por la medicación, el tipo y la cantidad. ¿Merece la pena intentarlo otra vez?
Muchísimas muchísimas gracias.

Answer:

I would be happy to respond but I don’t speak Spanish. So, could you re-post this in English please!

 

Geoff Sher

Name: María de los Ángeles 1

Cómo hago para donar ovulos

Answer:

Please post in English!

Geoff Sher

Name: Anusha F

Hi,
I have a 5cm endometrioma on my right ovary. Do you perform sclerotherapy of these?
Thanks

Answer:

I used to, but no longer have access to the sclerosant!

Sorry!

Geoff Sher

702-533-2691

___________________________________________________

Name: Natalia S

Quisiera más información sobre vender mis óvulos

Answer:

Please re-draft in English!

 

Geoff Sher

Name: Ruth A

Hello Dr. Sher,
I just had an egg retrieval cycle where despite my follicles growing nicely and the clinic expecting to collect 15 eggs, they only retrieved 6 eggs, two of which have fertilised. Apparently, the ‘empty’ follicles contained cumulus cells but no eggs.

This is my sixth retrieval cycle and I have never encountered this issue before. Normally I am able to predict quite nicely how many mature eggs I will get compared to my follicles. My last cycle I got 22 eggs and ultimately four euploid blastocysts – this was four months ago. The protocol was pretty much the same – just a different clinic.

I have had other issues with cycles, such as a cycle where 20 eggs were retrieved, 18 mature but only one fertilised. I have had a difficult journey but I have not had this issue before.

I am 37, nearly 38. My AMH tends to measure low (around 1) although the last two times it was tested were not at optimal times. I normally have around 20 or more follicles. I also
Have been diagnosed through a lap with mild endometriosis. I am banking embryos due to failed transfers and miscarriages resulting from six untested embryo transfers.

I’m planning to do another retrieval but I am so worried about this happening again.

Thank you.
Ruth

Answer:

Empty Follicle Syndrome” is a misleading term because follicles always contain eggs. However, some eggs may have difficulties detaching and being retrieved. This is more likely to happen when multiple attempts are needed to retrieve an egg from a follicle, indicating the egg may have chromosomal abnormalities.

The hormonal environment created during controlled ovarian stimulation plays a significant role in egg development. In certain cases, follicles may not release their eggs during retrieval, leading to the misconception of “empty” follicles.

This situation is most commonly encountered in older women, those with diminished ovarian reserve (DOR), and women with polycystic ovarian syndrome (PCOS). To address this problem, personalized protocols for controlled ovarian stimulation and careful administration of the hCG trigger shot are important.

The hCG trigger shot is given after optimal ovarian stimulation to initiate the process of reducing the number of chromosomes in the egg. It also helps the egg detach from the follicle’s inner wall. This allows for easier retrieval during the egg retrieval procedure.

Women with increased LH activity, such as older women, those with DOR, and women with PCOS, are more susceptible to the negative effects of LH-induced ovarian testosterone. Excessive LH activity can compromise egg development and increase the chances of chromosomal abnormalities. Medications like clomiphene and Letrozole can stimulate LH release, and certain drugs containing LH or hCG can have negative consequences.

Individualizing the controlled ovarian stimulation protocol, determining the correct dosage and type of hCG trigger, and administering it at the right time are crucial. The recommended dosage of urinary-derived hCG products is 10,000 units, while for recombinant DNA-derived hCG, the optimal dosage is 500 micrograms. A lower dosage of hCG can increase the risk of chromosomal abnormalities in the eggs and negatively impact the outcome of IVF.

Understanding the role of LH activity, the effects of medications on hormone release, and the importance of personalized protocols are vital. By optimizing these factors, the risk of failed egg retrieval and “empty follicle syndrome” can be minimized, improving the chances of successful IVF outcomes.

 _______________________________________________________

PLEASE SHARE THIS WITH OTHERS AND HELP SPREAD THE WORD!!

 

Herewith are  online links to 2  E-books recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

  1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) ; https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

 

  1. Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link ;https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

 

I invite you to visit my very recently launched “Podcast”,  “HAVE A BABY” on RUMBLE;   https://rumble.com/c/c-3304480

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com\