Ask Our Doctors

Dear Patients,

I created this forum to welcome any questions you have on the topic of infertility, IVF, conception, testing, evaluation, or any related topics. I do my best to answer all questions in less than 24 hours. I know your question is important and, in many cases, I will answer within just a few hours. Thank you for taking the time to trust me with your concern.

– Geoffrey Sher, MD

Fill in the following information and we’ll get back to you.

Name: Sreevidhya V

Hello Dr. Sher,
Hope you are doing well..

1. What is your view about hcg booster shots between ovulation induction and transfer for modified natural transfer? Does it have positive effect on endometrium before transfer? If yes what will be the ideal protocol and dose for hcg booster?

2. What is your view about hcg wash (500iu of hcg injection into uterus one day before Frozen transfer). Does it improve implantation chances? Are there any risks to changing endometrial receptivity due to hcg wash?

3. Adding a single dose of mid luteal phase agonist 3 days post embryo transfer in frozen embryo transfer seems to improve implantation especially for older patients. Do you think this is a worthwhile addition without any detrimental effects?

Is it fine to take lupion sub cutaneous progesterone instead of intramuscular for luteal support?
Planning to use crionone 8% progesterone gel and synthetic progesterone tablet also for medicated natural cycle fet. Please let me know if it should be fine and there is nothing like too much progesterone..

Thanks in advance for sharing your expert opinion and guidance.

Answer:

What is your view about hcg booster shots between ovulation induction and transfer for modified natural transfer? Does it have positive effect on endometrium before transfer? If yes what will be the ideal protocol and dose for hcg booster?

A: I do not advocate this!

2. What is your view about hcg wash (500iu of hcg injection into uterus one day before Frozen transfer). Does it improve implantation chances? Are there any risks to changing endometrial receptivity due to hcg wash?

A: It is a controversial approach which I do not believe helps!

3. Adding a single dose of mid luteal phase agonist 3 days post embryo transfer in frozen embryo transfer seems to improve implantation especially for older patients. Do you think this is a worthwhile addition without any detrimental effects?

A: Again, I do not believe there is a benefit.

 

GS

Name: Philisiwe P

I happened to take a test and it was positive i started having pains and irregular spotting i consulted with the health providers and so far i recieved to opinion the first Dr suspected an ealry pregnancy as he could not see the baby in the first time scan he drew blood and they returned with an hcg 477 i don’t even understand i did ask the doctor who said their suspecting an ectopic pregnancy they drew another blood to be investigated
Now im left confused more than ever i dont know what happening or how risky is my babies life please help shed some light if my hcg increases what could that mean and what hcg level indicates a baby growing inside the uterus and what hcg level indicates an ectopic pregnancy?

Answer:

There is no specific hCG level that differentiated between and IUP and an ectopic. However, the level should double every 2 days with normal intrauterine pregnancy …in the early stage of pregnancy. If it rises more slowly, that suggests a possible failing pregnancy or an ectopic. An US examination might also help around 7 weeks when a clear gestational sac should be visible in the uterus.

GS

 

 

 

Name: Saona E

Quisiera saber si me puedo embarazar nuevamente con ligaduras de trompas y de q forma sería el proceso

Answer:

Please re-post in English!

 

Geoff Sher

Name: Loraine D

Quiero iniciar el proceso pero quisiera saber si mi seguro médico cubre el proceso

Answer:

Please repost in English!

 

Geoff Sher

Name: Flora K

Dear Dr Sher,
I am a 35 years old woman and I have fallopian tube blockage. I have had 4 IVF cycles, 3 were unsuccessful, the second was successful (at the beginning hcg:5000, progesterone: 34), but unfortunately I had to abort it due to 22q microduplication (we were tested negative). Before the successful transfer I was sick and I got estrogen (it was after the stimulation round therefore my endometrium grew slower). I was vomiting, I had slight bleeding and I felt really bad during my pregnancy. Now I had a new stimulation round with PGT-A.
I had the following immunological tests: Th1/Th2 and NK. In the follicular phase I had extreme Th1 dominance and a little bit higher NK function. In the luteal phase (my cycle 28 days long but my luteal phase normally takes only 10 days) I had Th2 dominance and slightly higher number of NK cells.
In July I am going to have a new transfer. After LH peak I’ll get progesterone, steroid, maybe estrogen.
Do you think the medications may be sufficient for my immune problem? Is it possible that when I was pregnant due to the short luteal phase and the lower level of progesterone the immune system turned back to Th1 dominance and caused harm to the fetus?
I highly appreciate your reply.
All the bests,
Flora

Answer:

It seems highly likely that you do have an immunologic implantation dysfunction. Your endometrial cytoikine and NK cell elevation are suggestive. However, the cause must firsdt be identified before treatment can be defined for FET. This will require a detailed assessment (see below).

  • A RATIONAL BASIS FOR MANAGEMENT OF IMMUNOLOGIC CAUSES OF EMBRYO IMPLANTATION DYSFUNCTION

In the world of assisted reproduction, when IVF fails repeatedly or without explanation, it’s often assumed that poor embryo quality is the main culprit. However, this view oversimplifies the situation. The process of embryo implantation, which begins about six or seven days after fertilization, involves a complex interaction between embryonic cells and the lining of the uterus. These specialized cells, called trophoblasts, eventually become the placenta. When the trophoblasts meet the uterine lining, they engage in a communication process with immune cells through hormone-like substances called cytokines. This interaction plays a critical role in supporting the successful growth of the embryo. From the earliest stages, the trophoblasts establish the foundation for the exchange of nutrients, hormones, and oxygen between the mother and the baby. The process of implantation not only ensures the survival of early pregnancy but also contributes to the quality of life after birth.

There are numerous uterine factors that can impede embryo implantation potential. However, the vast majority relate to the following three (3) factors:

  1. Thin uterine lining (endometrium) . A lining that is <8mm in thickness at the time of ovulation, and/ or the administration of progesterone
  2. Irregularity the inner surface of the uterine cavity (caused by protruding sub-mucous fibroids, scar  tissue or polyps )
  • Immunologic factors that compromise implantation

Of these 3 factors, the one most commonly overlooked (largely because of the highly complex nature of the problem) is immunologic implantation dysfunction (IID), a common cause of “unexplained (often repeated) IVF failure and recurrent pregnancy loss. This article will focus on the one that most commonly is overlooked ….namely, immunologic implantation dysfunction (IID.

There is a growing recognition that problems with the immune function in the uterus can lead to embryo implantation dysfunction. The failure of proper immunologic interaction during implantation has been implicated as a cause of recurrent miscarriage, late pregnancy fetal loss, IVF failure, and infertility. Some immunologic factors that may contribute to these issues include antiphospholipid antibodies (APA), antithyroid antibodies (ATA) , and activated natural killer cells (NKa).

  • Activated natural Killer Cells (NKa):

During ovulation and early pregnancy, the uterine lining is frequented by NK cells and T-cells, which together make up more than 80% of the immune cells in the uterine lining. These cells travel from the bone marrow to the endometrium where they proliferate under hormonal regulation. When exposed to progesterone, they produce TH-1 and TH-2 cytokines. TH-2 cytokines help the trophoblast (embryo’s “root system”) to penetrate the uterine lining, while TH-1 cytokines induce apoptosis (cell suicide), limiting placental development to the inner part of the uterus. The balance between TH1 and TH-2 cytokines is crucial for optimal placental development. NK cells and T-cells contribute to cytokine production. Excessive TH-1 cytokine production is harmful to the trophoblast and endometrial cells, leading to programmed cell death and ultimately to implantation failure.

Functional NK cells reach their highest concentration in the endometrium around 6-7 days after ovulation or exposure to progesterone, which coincides with the time of embryo implantation.

It’s important to note that measuring the concentration of blood NK cells doesn’t reflect NK cell activation (NKa). The activation of NK cells is what matters. In certain conditions like endometriosis, the blood concentration of NK cells may be below normal, but NK cell activation is significantly increased.

There are several laboratory methods to assess NK cell activation (cytotoxicity), including immunohistochemical assessment of uterine NK cells and measuring TH-1 cytokines in the uterus or blood. However, the K-562 target cell blood test remains the gold standard. In this test, NK cells isolated from a woman’s blood are incubated with specific “target cells,” and the percentage of killed target cells is quantified. More than 12% killing indicates a level of NK cell activation that usually requires treatment. Currently, there are only a few Reproductive Immunology Reference Laboratories in the USA capable of reliably performing the K-562 target cell test.

There is a common misconception that adding IL (intralipid) or IVIg to NK cells can immediately downregulate NK cell activity. However, IL and IVIg cannot significantly suppress already activated NK cells. They are believed to work by regulating NK cell progenitors, which then produce downregulated NK cells. To assess the therapeutic effect, IL/IVIg infusion should be done about 14 days before embryos are transferred to the uterus to ensure a sufficient number of normal functional NK cells are present at the implantation site during embryo transfer. Failure to recognize this reality has led to the erroneous demand from IVF doctors for Reproductive Immunology Reference Laboratories to report on NK cell activity before and immediately after exposure to IVIg or IL at different concentrations. However, since already activated NK cells cannot be deactivated in the laboratory, assessing NKa suppression in this way has little clinical benefit. Even if blood is drawn 10-14 days after IL/IVIg treatment, it would take another 10-14 days to receive the results, which would be too late to be practically advantageous.

  • Antiphospholipid Antibodies:

Many women who struggle with IVF failure or recurrent pregnancy loss, as well as those with a personal or family history of autoimmune diseases like lupus erythematosus, rheumatoid arthritis, scleroderma, and dermatomyositis, often test positive for antiphospholipid antibodies (APAs). Over 30 years ago, I proposed a treatment for women with positive APA tests. This involved using a low dose of heparin to improve the success of IVF implantation and increase birth rates. Research indicated that heparin could prevent APAs from affecting the embryo’s “root system” ( the trophoblast), thus enhancing implantation. We later discovered that this therapy only benefits women whose APAs target specific phospholipids (phosphatidylethanolamine and phosphatidylserine). Nowadays, longer-acting low molecular weight heparinoids like Lovenox and Clexane have replaced heparin.

  • Antithyroid Antibodies ( thyroid peroxidase -TPO and antithyroglobulin antibodies (TGa)

Between 2% and 5% of women of the childbearing age have reduced thyroid hormone activity (hypothyroidism). Women with hypothyroidism often manifest with reproductive failure i.e., infertility, unexplained (often repeated) IVF failure, or recurrent pregnancy loss (RPL). The condition is 5-10 times more common in women than in men. In most cases hypothyroidism is caused by damage to the thyroid gland resulting from thyroid autoimmunity (Hashimoto’s disease) caused by damage done to the thyroid gland by antithyroglobulin and antimicrosomal auto-antibodies. The increased prevalence of hypothyroidism and thyroid autoimmunity (TAI) in women is likely the result of a combination of genetic factors, estrogen-related effects, and chromosome X abnormalities. This having been said, there is significantly increased incidence of thyroid antibodies in non-pregnant women with a history of infertility and recurrent pregnancy loss and thyroid antibodies can be present asymptomatically in women without them manifesting with overt clinical or endocrinologic evidence of thyroid disease. In addition, these antibodies may persist in women who have suffered from hyper- or hypothyroidism even after normalization of their thyroid function by appropriate pharmacological treatment. The manifestations of reproductive dysfunction thus seem to be linked more to the presence of thyroid autoimmunity (TAI) than to clinical existence of hypothyroidism and treatment of the latter does not routinely result in a subsequent improvement in reproductive performance. It follows that if antithyroid autoantibodies are associated with reproductive dysfunction they may serve as useful markers for predicting poor outcome in patients undergoing assisted reproductive technologies. Some years back, I reported on the fact that 47% of women who harbor thyroid autoantibodies, regardless of the absence or presence of clinical hypothyroidism, have activated uterine natural killer cells (NKa) cells and cytotoxic lymphocytes (CTL) and that such women often present with reproductive dysfunction. We demonstrated that appropriate immunotherapy with IVIG or intralipid (IL) and steroids subsequently often results in a significant improvement in reproductive performance in such cases.


Almost 50% of women with antithyroid antibodies do not have activated cytotoxic T lymphocytes (CTL) or natural killer cells (NK cells). This suggests that the antibodies themselves may not be the direct cause of reproductive dysfunction. Instead, the activation of CTL and NK cells, which occurs in about half of the cases with thyroid autoimmunity (TAI), is likely an accompanying phenomenon that damages the early “root system” (trophoblast) of the embryo during implantation.

Treating women who have both antithyroid antibodies and activated NK cells/CTL with intralipid (IL) and steroids improves their chances of successful reproduction. However, women with antithyroid antibodies who do not have activated NK cells/CTL do not require this treatment.

  • Treatment Options for Immunologic Implantation Dysfunction (IID):
  1. Intralipid (IL) Therapy: IL is a mixture of soybean lipid droplets in water, primarily used for providing nutrition. When administered intravenously, IL supplies essential fatty acids that can activate certain receptors in NK cells, reducing their cytotoxic activity and enhancing implantation. IL, combined with corticosteroids, suppresses the overproduction of pro-inflammatory cytokines by NK cells, improving reproductive outcomes. IL is cost-effective and has fewer side effects compared to other treatments like IVIg.
  2. Intravenous immunoglobulin-G (IVIg) Therapy: In the past, IVIg was used to down-regulate activated NK cells. However, concerns about viral infections and the high cost led to a decline in its use. IVIg can be effective, but IL has become a more favorable and affordable alternative.
  3. Corticosteroid Therapy: Corticosteroids, such as prednisone and dexamethasone, are commonly used in IVF treatment. They have an immunomodulatory effect and reduce TH-1 cytokine production by CTL. When combined with IL or IVIg, corticosteroids enhance the implantation process. Treatment typically starts 10-14 days before embryo transfer and continues until the 10th week of pregnancy.
  4. Heparinoid Therapy: Low molecular weight heparin (Clexane, Lovenox) can improve IVF success rates in women with antiphospholipid antibodies (APAs) and may prevent pregnancy loss in certain thrombophilias when used during treatment. It is administered subcutaneously once daily from the start of ovarian stimulation.
  5. TH-1 Cytokine Blockers (Enbrel, Humira): TH-1 cytokine blockers have limited effectiveness in the IVF setting and, in my opinion, no compelling evidence supports their use. They may have a role in treating threatened miscarriage caused by CTL/NK cell activation, but not for IVF treatment. TH-1 cytokines are needed for cellular response, during the early phase of implantation, so completely blocking them could hinder normal implantation.
  1. Baby Aspirin and IVF: Baby aspirin doesn’t offer much value in treating implantation dysfunction (IID) and may even reduce the chance of success. This is because aspirin thins the blood and increases the risk of bleeding, which can complicate procedures like egg retrieval or embryo transfer during IVF, potentially compromising its success.
  2. Leukocyte Immunization Therapy (LIT): LIT involves injecting the male partner’s lymphocytes into the mother to improve the recognition of the embryo as “self” and prevent rejection. LIT can up-regulate Treg cells and down-regulate NK cell activation, improving the balance of TH-1 and TH-2 cells in the uterus. However, the same benefits can be achieved through IL (Intralipid) therapy combined with corticosteroids. IL is more cost-effective, and the use of LIT is prohibited by law in the USA.

Types of Immunologic Implantation Dysfunction (IID) and NK Cell Activation:

  1. Autoimmune Implantation Dysfunction: Women with a personal or family history of autoimmune conditions like Rheumatoid arthritis, Lupus Erythematosus, thyroid autoimmune disease (Hashimoto’s disease and thyrotoxicosis), and endometriosis (in about one-third of cases) may experience autoimmune IID. However, autoimmune IID can also occur without any personal or family history of autoimmune diseases.Treatment for NK cell activation in IVF cases complicated by autoimmune IID involves a combination of daily oral dexamethasone from the start of ovarian stimulation until the 10th week of pregnancy, along with 20% intralipid (IL) infusion 10 days to 2 weeks before embryo transfer. With this treatment, the chance of a viable pregnancy occurring within two completed embryo transfer attempts is approximately 70% for women <40 years old who have  normal ovarian reserve.
  2. Alloimmune Implantation Dysfunction: NK cell activation occurs when the uterus is exposed to an embryo that shares certain genotypic (HLA/DQ alpha) similarities with the embryo recipient.
    • Partial DQ alpha/HLA genetic matching: Couples who share only one DQ alpha/HLA gene are considered to have a “partial match.” If NK cell activation is also present, this partial match puts the couple at a disadvantage for IVF success. However, it’s important to note that DQ alpha/HLA matching, whether partial or total, does not cause IID without associated NK cell activation. Treatment for partial DQ alpha/HLA match with NK cell activation involves IL infusion and oral prednisone as adjunct therapy. IL infusion is repeated every 2-4 weeks after pregnancy is confirmed and continued until the 24th week of gestation. In these cases, only one embryo is transferred at a time to minimize the risk of NK cell activation.
    • Total (Complete) Alloimmune Genetic Matching: A total alloimmune match occurs when the husband’s DQ alpha genotype matches both that of the partner. Although rare, this total match along with NK cell activation significantly reduces the chance of a viable pregnancy resulting in a live birth at term. In some cases, the use of a gestational surrogate may be necessary.

It should be emphasized that poor embryo quality is not always the main cause of reproductive dysfunction and that the complex interaction between embryonic cells and the lining of the uterus  plays a critical role in successful implantation. Women with personal or family histories of autoimmune disease or endometriosis and those with unexplained (often repeated) IVF failure or recurrent pregnancy loss, often have immunologic implantation dysfunction (IID as the underlying cause . For such women, it is important to understand how IID leads to reproductive failure and how selective treatment options such as intralipid (IL), corticosteroid and heparinoid therapy, can dramatically  improve reproductive outcomes. Finally, there is real hope that proper identification and management of IID can  significantly improve the chance of successful reproduction and ultimately contribute to better quality of life after birth.

___________________________________________________________________

PLEASE SHARE THIS WITH OTHERS AND HELP SPREAD THE WORD!!

 

Herewith are  online links to 2  E-books recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

  1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) ; https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

 

  1. Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link ;https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

 

I invite you to visit my very recently launched “Podcast”,  “HAVE A BABY” on RUMBLE;   https://rumble.com/c/c-3304480

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com\

 

Name: Fabricio Q

Q tengo q aser

Answer:

PLease post in English!

 

Geoff Sher

Name: Ahmad A

A woman doesn’t ovulates what can she do ??

Answer:

You have to determine the reason and provided it is not due to menopause and she is not >42Y of age…ovulation induction.

Name: Amalfi M

Hola doctor me queda alguna posibilidad de embarazarme con 43

Answer:

Please re-post in English!

Geoff Sher

Name: Kseniya F

Hi. Is it possible to get a second opinion on my IVF process? I’m located in Philadelphia and won’t be getting IVF at your clinic. I just wanted to find out Dr. Sher’s opinion about my IVF protocols and what can be done to improve my euploids rate. I’m 42, had 3 egg retrievals and 1 natural pregnancy for the past 1.5 years. From 3 egg retrievals we had 9 embryos, and they were all aneuploid. 1 natural pregnancy resulted in abortion at 16 weeks due to NIPT and CVS test confirming down syndrome in fetus.

Thanks

Answer:

Please call Patti at 702-533-2691 or email her at concierge@sherivf.com  and set up an online consultation with me.

 

Geoff Sher

________________________________________________________________________

  • EGG/ EMBRYO QUALITY IN IVF & HOW SELECTION OF THE IDEAL PROTOCOL FOR OVARIAN STIMULATION INFLUENCES  EGG/EMBRYO QUALITY AND  OUTCOME.

The journey of in vitro fertilization can be a rollercoaster of emotions for many patients. Often times they have to face the harsh reality that the number and quality of eggs retrieved has fallen short of their expectations. Then, should fertilization of these eggs not propagate  chromosomally normal (euploid), “competent” embryos suitable for transfer to the uterus, many such patients find themselves in a state of emotional distress. They grapple with the inevitable questions of why this happened and how to prevent it from occurring again in the future. This article aims to delve into these queries, providing insights, rational explanations, and therapeutic options. It is an invitation to explore the light at the end of the tunnel. Readers are urged to carefully absorb the entirety of the article in the hope of finding valuable information and renewed hope.

  • The Importance of Chromosomal Integrity: While sperm quality is an important factor, egg quality is by far the most important when it comes to the generation of embryos that are capable of propagating healthy babies (“competent”). In this regard, chromosomal integrity of the egg and embryo, although it is not the only factor , is certainly the main determinant of such competency.
  • The woman’s age: About two thirds of a woman’s eggs in her twenties or early thirties have the correct number of chromosomes, which is necessary for a healthy pregnancy. As a woman gets older, the percentage of eggs with the right number of chromosomes decreases. By age 40, only about one in every 5-6 eggs is likely to be normal, and by the mid-forties, less than one in ten eggs will be normal.
  • Ovarian Reserve (number of available in the ovaries): A woman is born with all the eggs she will ever have. She starts using these eggs when she begins ovulating during puberty. At first, the eggs are used up quickly, but as she gets older, the number of eggs starts to run out. Her brain and pituitary gland try to stimulate the production of more eggs by increasing the output of Follicle Stimulating Hormone (FSH), but unfortunately, this often doesn’t work. When the number of remaining eggs in her ovaries falls below a certain level (which can be different for each woman), her FSH level rises, and production of the ovarian hormone, AMH decreases. This is the start of diminishing ovarian reserve (DOR). Most women experience the onset of DOR in their late 30s or early 40s, but it can happen earlier for some. The lower the ovarian reserve, the lower the AMH level will be, and the fewer eggs will be available for harvesting during IVF-egg retrieval. In such cases, a higher dosage of fertility drugs might be needed to promote better egg production in future attempts. . On the other hand, higher AMH levels mean more eggs are available, and lower doses of fertility drugs are usually needed. DOR is commonly associated with increased bioactivity of pituitary gland-produced LH. This LH activates production of ovarian male hormones (androgens)…predominantly testosterone by ovarian connective tissue (stroma) . While a small amount of  ovarian testosterone is absolutely necessary for optimal follicle and egg development, excessive ovarian testosterone will often access the follicle , and compromise both egg quality and follicle growth and development. In some cases, rapidly increasing  LH-release (“premature LH-surge”) with excessive induced ovarian testosterone can lead to “premature luteinization”  of the follicles with cessation in growth and even to“ premature ovulation”.
  • Importance of Individualized Controlled Ovarian Stimulation (COS) Protocol: It’s not surprising that DOR is more common in older women, but regardless of age, having DOR makes a woman’s eggs more likely to be compromised during controlled ovarian stimulation (COS). The choice of the COS protocol is crucial to preventing unintentional harm to egg and embryo quality. The wrong protocol can disrupt normal egg development and increase the risk of abnormal embryos. That’s why it’s important to tailor the COS protocol to each individual’s needs. This helps optimize follicle growth and the quality of eggs and embryos. The timing of certain treatments is also important for successful outcomes.
  • Embryo Competency and Blastocyst Development: Embryos that don’t develop into blastocysts by day 6 after fertilization are usually chromosomally abnormal or aneuploid (”incompetent”) and not suitable for transfer. However, not all blastocysts are guaranteed to be normal and capable of developing into a healthy baby. As a woman gets older, the chances of a her embryos being chromosomally normal blastocyst decreases. For example, a blastocyst from a 30-year-old woman is more likely to be normal compared to one from a 40-year-old woman.

The IVF stimulation protocol has a big impact on the quality of eggs and embryos especially in women with DOR. Unfortunately, many IVF doctors use the same COS “recipe approach” for everyone without considering individual differences. Using personalized protocols can greatly improve the success of IVF. While we can’t change genetics or reverse a woman’s age, a skilled IVF specialist can customize the COS protocol to meet each patient’s specific needs.

GONADOTROPIN RELEASING HORMONE AGONISTS (GNRHA) AND GNRH-ANTAGONISTS:

  • Gonadotropin releasing hormone agonists (GnRHa). Examples are  Lupron, Buserelin, Superfact, and Decapeptyl . These are commonly used to launch  ovarian stimulation cycles. They work by initially causing a release of pituitary gonadotropins, followed by a decrease in LH and FSH levels within 4-7 days. This creates a relatively low LH environment when COS begins, which is generally beneficial for egg development. However, if GnRHa are administered starting concomitant with gonadotropin stimulation (see GnRHa –“flare protocol” -below) it can cause an immediate surge in LH release, potentially leading to high levels of ovarian testosterone that can harm egg quality, especially in older women and those with diminished ovarian reserve (DOR).
  • Gonadotropin releasing hormone antagonists (GnRH-antagonists) : Examples are Ganirelix, Cetrotide, and Orgalutron. GnRH antagonists (take days   work quickly (within hours) to block pituitary LH release. Their purpose is to prevent excessive LH release during COS. In contrast, the LH-lowering effect of GnRH agonists takes several days to develop. Traditionally, GnRH antagonists are given starting on the 5th-7th day of gonadotropin stimulation. However, in older women and those with DOR, suppressing LH might happen too late to prevent excessive ovarian androgen production that can negatively impact egg development in the early stages of stimulation. That’s why I prefer to administer GnRH-antagonists right from the beginning of gonadotropin administration.

 

USING BIRTH CONTROL PILLS TO START OVARIAN STIMULATION:

Patients are often told that using birth control pills (BCP) to begin ovarian stimulation will suppress the response of the ovaries. This is true, but only if the BCP is not used correctly. Here’s the explanation:

In natural menstrual cycles and cycles stimulated with fertility drugs, the follicles in the ovaries need to develop receptors that respond to follicle-stimulating hormone (FSH) in order to properly respond to FSH stimulation. Pre-antral follicles (PAFs) do not have these receptors and cannot respond to FSH stimulation. The development of FSH responsivity requires exposure of the pre-antral follicles to FSH for several days, during which they become antral follicles (AFs) and gain the ability to respond to FSH-gonadotropin stimulation. In regular menstrual cycles, the rising FSH levels naturally convert PAFs to AFs. However, the combined BCP suppresses FSH. To counter this suppression, we need to promote increased  FSH production several days before starting COS. This allows the orderly conversion from PAFs to AFs, ensuring proper follicle and egg development.

GnRHa causes an immediate surge in FSH release by the pituitary gland, promoting the conversion from PAF to AF. Therefore, when women take the BCP control pill to launch a cycle of COS, they need to overlap the BCP with a GnRHa for a few days before menstruation. This allows the early recruited PAFs to complete their development and reach the AF stage, so they can respond appropriately to ovarian stimulation. By adjusting the length of time, the woman is on the birth control pill, we can regulate and control the timing of the IVF treatment cycle. Without this step, initiating ovarian stimulation in women coming off birth control pills would be suboptimal.

PROTOCOLS FOR CONTROLLED OVARIAN STIMULATION (COS):

  • GnRH Agonist Ovarian Stimulation Protocols:
    • The long GnRHa protocol: Here, a GnRHa (usually Lupron or Superfact) is given either in a natural cycle, starting 5-7 days before menstruation, overlapping with the BCP for three days. Thereupon,  the pill is stopped, while daily  GnRHa injections continue until menstruation occurs (usually 5-7 days later). The GnRHa causes a rapid rise in FSH and LH levels. This is followed about 3-4 days later , by a progressive decline in FSH and LH to near zero levels,  with a concomitant drop in ovarian estradiol and progesterone. This, in turn triggers uterine withdrawal bleeding (menstruation) within 5-7 days of starting the GnRHa administration. Gonadotropin treatment is then initiated while daily GnRHa injections continue to maintain a relatively low LH environment. Gonadotropin administration continues until the hCG “trigger” (see below).
    • Short GnRH-Agonist (“Flare”) Protocol: This protocol involves starting hormone therapy and using GnRH agonist at the same time. The goal is to boost FSH so that with concomitant stimulation with FSH-gonadotropins  + the GnRHa-induced surge in pituitary gland FSH release, will augment follicle development. However, this surge also leads to a rise in LH levels, which can cause an excessive production of ovarian male hormones (e.g., testosterone). This could potentially adversely affect the quality of eggs, especially in women over 39 years old, those with low ovarian reserve, and women with PCOS or DOR who already have increased LH sensitivity. In this way, these “flare protocols” can potentially decrease the success rates of IVF. While they are generally safe for younger women with normal ovarian reserve, I personally avoid using this approach on the off chance that even patients with normal ovarian reserve, might experience poor egg quality.
  • GnRH Antagonist-Ovarian Stimulation Protocols:
    • Conventional GnRH Antagonist Protocol: In this approach, daily GnRH antagonist injections are  given from the 5th to the 8th day of COS with gonadotropins to the day of the “trigger” (see below). Accordingly, although rapidly acting to lower LH , this effect of GnRH- antagonist only starts suppressing LH from well into the COS cycle which means the ovarian follicles are left exposed and unshielded from pituitary gland -produced, (endogenous) LH during the first several days of stimulation. This can be harmful, especially in the early stage of COS when eggs and follicles are most vulnerable to the effects of over-produced LH-induced excessive ovarian testosterone. Therefore, I believe the Conventional GnRH Antagonist Protocol is not ideal for older women, those with low ovarian reserve, and women with PCOS who already have elevated LH activity. However, this protocol is acceptable for younger women with normal ovarian reserve, although I personally avoid using this approach on the off chance that even patients with normal ovarian reserve, might experience poor egg quality.

It’s important to note that the main reason for using GnRH antagonists is to prevent a premature LH surge, which is associated with poor egg and embryo quality due to follicular exhaustion. However, calling it a “premature LH surge” is misleading because it actually represents the culmination of a progressive increase in LH-induced ovarian testosterone. A better term would be “premature luteinization”. In some such cases, the rise in LH can precipitate “premature ovulation”.

 

  • Agonist/Antagonist Conversion Protocol (A/ACP): I recommend this protocol for many of my patients, especially for older women and those with DOR or PCOS. The woman starts by taking a BCP for 7-10 days. This overlapped with a GnRHa for 3 days and continued until menstruation ensues about 5-7 days later. At this point  she “converts” from the GnRH-agonist to a GnRH-antagonist (Ganirelix, Orgalutron, or Cetrotide). A few days after this conversion from agonist to antagonist, COS with  gonadotropin stimulation starts. Both the antagonist and the gonadotropins are continued together until the hCG trigger. The purpose is to suppress endogenous LH release throughout the COS process and so  avoid over-exposure of follicles and eggs to LH-induced  excessive ovarian testosterone which as previously stated, can compromise egg and follicle growth and development.   Excessive ovarian testosterone can also adversely affect estrogen-induced growth of the uterine lining (endometrium). Unlike GnRH-agonists, antagonists do not suppress ovarian response to the gonadotropin stimulation. This is why the A/ACP is well-suited for older women and those with diminished ovarian reserve.
  • A/ACP with estrogen priming: This is a modified version of the A/ACP protocol used for women with very low ovarian reserve (AMH=<0.2ng/ml). Estrogen priming is believed to enhance the response of follicles to gonadotropins. Patients start their treatment cycle by taking a combined birth control pill (BCP) for 7-10 days. After that, they overlap daily administration of a GnRH agonist with the BCP for 3 days. The BCP is then stopped, and the daily agonist continues until menstruation ensues (usually 5-7 days later). At this point, the GnRH agonist is supplanted by daily injections of  GnRH antagonist and  Estradiol (E2) “priming” begins using E2 skin patches or intramuscular estradiol valerate injections twice weekly, while continuing the GnRH antagonist. Seven days after starting the estrogen priming COS begins using recombinant FSHr such as Follistim, Gonal-F or Puregon) +menotropin (e.g., Menopur) . The estrogen “priming” continues to the day of the “trigger” (see below).  Egg retrieval is performed 36 hours after the trigger.


Younger women (under 30 years) and women with absent, irregular, or dysfunctional ovulation, as well as those with polycystic ovarian syndrome (PCOS), are at risk of developing a severe condition called Ovarian Hyperstimulation Syndrome (OHSS), which can be life-threatening. To predict this condition, accurate daily blood E2 level monitoring is required.

 

TRIGGERING “EGG MATURATION PRIOR TO EGG RETRIEVAL”

  • The hCG “trigger”: When it comes to helping eggs mature before retrieval, one of the important decisions the doctor needs to make is choosing the “trigger shot” to facilitate the process. Traditionally, hCG (human chorionic gonadotropin) is derived from the urine of pregnant women (hCGu) while a newer recombinant hCG (hCGr), Ovidrel was recently  introduced. The ideal dosage of hCGu is 10,000U and for Ovidrel, the recommended dosage is 500mcg. Both have the same efficacy. The “trigger” is usually administered by intramuscular injection, 34-36 hours prior to egg retrieval.

Some doctors may choose to lower the dosage of hCG if there is a risk of severe ovarian hyperstimulation syndrome (OHSS). However, I believe that a low dose of hCG (e.g., 5000 units of hCGu or 250 mcg of hCGr ( Ovidrel) might not be enough to optimize egg maturation, especially when there are many follicles. Instead, I suggest using a method called “prolonged coasting” to reduce the risk of OHSS.

  • Using GnRH antagonist alone or combined with hCG as the trigger: Some doctors may prefer to use a GnRH- agonist  trigger instead of hCG to reduce the risk of OHSS. The GnRHa “trigger” acts by inducing a “surge of pituitary gland-LH. However, it is difficult to predict the amount of LH that is released in response to a standard agonist trigger. In my opinion, using hCG is a better choice, even in cases of ovarian hyperstimulation, with the condition that “prolonged coasting” is implemented beforehand.
  • Combined use of hCG + GnRH agonist: This approach is better than using a GnRH agonist alone but still not as effective as using the appropriate dosage of hCG.
  • Timing of the trigger: The trigger shot should be given when the majority of ovarian follicles have reached a size of more than 15 mm, with several follicles measuring 18-22 mm. Follicles larger than 22 mm often contain overdeveloped eggs, while follicles smaller than 15 mm usually have underdeveloped and potentially abnormal eggs.

SEVERE OVARIAN HYPERSTIMULATION SYNDROME (OHSS) & “PROLONGED COASTING”

OHSS is a life-threatening condition that can occur during controlled ovarian stimulation (COS) when the blood E2 (estradiol) level rises too high. It is more common in young women with high ovarian reserve, women with polycystic ovarian syndrome (PCOS), and young women who do not ovulate spontaneously. To prevent OHSS, some doctors may trigger egg maturation earlier, use a lower dosage of hCG, or “trigger” using a GnRHa. However, these approaches can compromise egg and embryo quality and reduce the chances of success.

To protect against the risk of OHSS while optimizing egg quality, Physicians can use one of two options. The first is “prolonged coasting,” a procedure I introduced more than three decades ago. It involves stopping gonadotropin therapy while continuing to administer the GnRHa until the risk of OHSS has decreased. The precise timing of “prolonged coasting” is critical. It should be initiated when follicles have reached a specific size accompanied and the  blood estradiol has reached a certain peak.  The second option is to avoid fresh embryo transfer and freeze all “competent” embryos for later frozen embryo transfers (FETs) at a time when the risk of OHSS has subsided. By implementing these strategies, both egg/embryo quality and maternal well-being can be maximized.

 

In the journey of fertility, a woman is blessed with a limited number of eggs, like precious treasures awaiting their time. As she blossoms into womanhood, these eggs are gradually used, and the reserves start to fade. Yet, the power of hope and science intertwines, as we strive to support the development of these eggs through personalized treatment. We recognize that each woman is unique, and tailoring the protocol to her individual needs can unlock the path to success. We embrace the delicate timing, understanding that not all embryos are destined for greatness. With age, the odds may shift, but our dedication remains steadfast, along with our ultimate objective, which is  to do everything possible to propagate  of a normal pregnancy while optimizing the  quality of that life after birth and all times, minimizing risk to the prospective parents.

 __________________________________________________________

PLEASE SHARE THIS WITH OTHERS AND HELP SPREAD THE WORD!!

 

Herewith are  online links to 2  E-books recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

  1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) ; https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

 

  1. Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link ;https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

 

I invite you to visit my very recently launched “Podcast”,  “HAVE A BABY” on RUMBLE;   https://rumble.com/c/c-3304480

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com\

 

Name: Joanna B

Hi Dr Sher,
My husband and I had our son 5 years(+3 months) ago. He was conceived after just 2 months trying.
We have been experiencing secondary infertility for over 4 year +3 months. I have had 5 embryos fail (untested, age 37). 1 was a blighted ovum, and 1 was a 9 week loss. In all these 4+ years, we have not had a natural pregnancy / even a chemical. I will be turning 40 next month and have 1 euploid (from 2nd retrieval, which yielded in 5 blasts, but only 1 euploid).

I had a (small) isthmocele repaired laparoscopically (as I thought this was our issue). Stage 2 endo was found and partially excised.

I had a RIF panel done, and I’m a carrier for Pai 1( take Fragamin 5000 with transfers), carrier for MTHFR 1298 A>C, carrier for Factor XIII, and carrier for MTRR A66G (take methyl folate with Vitamin b for this). I think when I had this RIF panel done, they tested NK and they were normal (this I got the results January 2023).

I read in your ebook where you say: “With paternal-maternal DQ alpha matching it will often take the passage of several
pregnancies for NK cell activation to build to the point that woman with alloimmune
implantation dysfunction will present with clinical evidence of implantation
dysfunction. Sometimes it starts off with one or two pregnancies surviving to birth of
a baby, whereupon NK/CTL cell activity starts to build, leading to one or more early
miscarriages. Eventually the NK /CTL activity is so high that subsequent pregnancies
can be lost before the woman is even aware that she was pregnant at all. At this point
she is often diagnosed with secondary, “unexplained” infertility and/or “unexplained”
IVF failure. The case report below illustrates the interplay of factors involved in
Alloimmune IID.

I am in Canada. Where can I get tested for dq alpha match? Does it sound like this may be an issue?
Do you think LIT therapy may be an answer ?(but I have to do immune testing first).
What steps do you recommend?

Thanks

Answer:

I think we should talk. Please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherIVF.com to set up an online consultation with me.

Geoff Sher

______________________________________________________________________

  • UNDERSTANDING RECURRENT PREGNANCY LOSS ( RPL): CAUSES AND SOLUTIONS.

When it comes to reproduction, humans face challenges compared to other mammals. A significant number of fertilized eggs in humans do not result in live births, with up to 75% failing to develop, and around 30% of pregnancies ending within the first 10 weeks  (first trimester). Recurrent pregnancy loss (RPL) refers to two or more consecutive failed pregnancies, which is relatively rare, affecting less than 5% of women for two losses and only 1% for three or more losses. Understanding the causes of pregnancy loss and finding solutions is crucial for those affected. This article aims to explain the different types of pregnancy loss and shed light on potential causes.

Types of Pregnancy Loss: Pregnancy loss can occur at various stages, leading to different classifications:

  1. Early Pregnancy Loss: Also known as a miscarriage, this typically happens in the first trimester. Early pregnancy losses are usually sporadic, not recurring. In over 70% of cases, these losses are due to chromosomal abnormalities in the embryo, where there are more or fewer than the normal 46 chromosomes. Therefore, they are not likely to be repetitive.
  2. Late Pregnancy Loss: Late pregnancy losses occur after the first trimester (12th week) and are less common (1% of pregnancies). They often result from anatomical abnormalities in the uterus or cervix. Weakness in the cervix, known as cervical incompetence, is a frequent cause. Other factors include developmental abnormalities of the uterus, uterine fibroid tumors, intrauterine growth retardation, placental abruption, premature rupture of membranes, and premature labor.

Causes of Recurrent Pregnancy Loss (RPL): Recurrent pregnancy loss refers to multiple consecutive miscarriages. While chromosomal abnormalities are a leading cause of sporadic early pregnancy losses, RPL cases are mostly attributed to non-chromosomal factors. Some possible causes include:

  1. Uterine Environment Problems: Issues with the uterine environment can prevent a normal embryo from properly implanting and developing. These problems may include inadequate thickening of the uterine lining, irregularities in the uterine cavity (such as polyps, fibroid tumors, scarring, or adenomyosis), hormonal imbalances (progesterone deficiency or luteal phase defects), and deficient blood flow to the uterine lining.
  2. Immunologic Implantation Dysfunction (IID): IID is a significant cause of RPL, contributing to 75% of cases where chromosomally normal embryos fail to implant. It involves the immune system’s response to pregnancy, which can interfere with successful implantation.
  3. Blood Clotting Disorders: Thrombophilia, a hereditary clotting disorder, can disrupt the blood supply to the developing fetus, leading to pregnancy loss.
  4. Genetic and Structural Abnormalities: Genetic abnormalities are rare causes of RPL, while structural chromosomal abnormalities occur infrequently (1%). Unbalanced translocation, where part of one chromosome detaches and fuses with another, can lead to pregnancy loss. Studies also suggest that damaged sperm DNA can negatively impact fetal development and result in miscarriage.

 

IMMUNOLOGIC IMPLANTATION DYSFUNCTION AND RPL:

 

Autoimmune IID: Here an immunologic reaction is produced by the individual to his/her body’s own cellular components. The most common antibodies that form in such situations are APA and antithyroid antibodies (ATA). But it is only when specialized immune cells in the uterine lining, known as cytotoxic lymphocytes (CTL) and natural killer (NK) cells, become activated and start to release an excessive/disproportionate amount of TH-1 cytokines that attack the root system of the embryo, that implantation potential is jeopardized. Diagnosis of such activation requires highly specialized blood test for cytokine activity that can only be performed by a handful of reproductive immunology reference laboratories in the United States. Alloimmune IID, (i.e., where antibodies are formed against antigens derived from another member of the same species), is believed to be a common immunologic cause of recurrent pregnancy loss. Autoimmune IID is often genetically transmitted. Thus, it should not be surprising to learn that it is more likely to exist in women who have a family (or personal) history of primary autoimmune diseases such as lupus erythematosus (LE), scleroderma or autoimmune hypothyroidism (Hashimoto’s disease), autoimmune hyperthyroidism (Grave’s disease), rheumatoid arthritis, etc. Reactionary (secondary) autoimmunity can occur in conjunction with any medical condition associated with widespread tissue damage. One such gynecologic condition is endometriosis. Since autoimmune IID is usually associated with activated NK and T-cells from the outset, it usually results in such very early destruction of the embryo’s root system that the patient does not even recognize that she is pregnant. Accordingly, the condition usually presents as “unexplained infertility” or “unexplained IVF failure” rather than as a miscarriage. Alloimmune IID, on the other hand, usually starts off presenting as unexplained miscarriages (often manifesting as RPL). Over time as NK/T cell activation builds and eventually becomes permanently established the patient often goes from RPL to “infertility” due to failed implantation. RPL is more commonly the consequence of alloimmune rather than autoimmune implantation dysfunction. However, regardless, of whether miscarriage is due to autoimmune or alloimmune implantation dysfunction the final blow to the pregnancy is the result of activated natural killer cells (NKa) and cytotoxic lymphocytes (CTL B) in the uterine lining that damage the developing embryo’s “root system” (trophoblast) so that it can no longer sustain the growing conceptus. This having been said, it is important to note that autoimmune IID is readily amenable to reversal through timely, appropriately administered, selective immunotherapy, and alloimmune IID is not. It is much more difficult to treat successfully, even with the use of immunotherapy. In fact, in some cases the only solution will be to revert to selective immunotherapy plus using donor sperm (provided there is no “match” between the donor’s DQa profile and that of the female recipient) or alternatively to resort to gestational surrogacy.

 

DIAGNOSING THE CAUSE OF RPL.

In the past, women who miscarried were not evaluated thoroughly until they had lost several pregnancies in a row. This was because sporadic miscarriages are most commonly the result of embryo numerical chromosomal irregularities (aneuploidy) and thus not treatable. However, a consecutive series of miscarriages points to a repetitive cause that is non-chromosomal and is potentially remediable. Since RPL is most commonly due to a uterine pathology or immunologic causes that are potentially treatable, it follows that early chromosomal evaluation of products of conception could point to a potentially treatable situation. Thus, I strongly recommend that such testing be done in most cases of miscarriage. Doing so will avoid a great deal of unnecessary heartache for many patients. Establishing the correct diagnosis is the first step toward determining effective treatment for couples with RPL. It results from a problem within the pregnancy itself or within the uterine environment where the pregnancy implants and grows. Diagnostic tests useful in identifying individuals at greater risk for a problem within the pregnancy itself include Karyotyping (chromosome analysis) both prospective parents Assessment of the karyotype of products of conception derived from previous miscarriage specimens Ultrasound examination of the uterine cavity after sterile water is injected or sonohysterogram, fluid ultrasound, etc.) Hysterosalpingogram (dye X-ray test) Hysteroscopic evaluation of the uterine cavity Full hormonal evaluation (estrogen, progesterone, adrenal steroid hormones, thyroid hormones, FSH/LH, etc.) Immunologic testing to include Antiphospholipid antibody (APA) panel Antinuclear antibody (ANA) panel Antithyroid antibody panel (i.e., antithyroglobulin and antimicrosomal antibodies) Reproductive immunophenotype Natural killer cell activity (NKa) assay (i.e., K562 target cell test) Alloimmune testing of both the male and female partners

 

TREATMENT OF RPL

  • Treatment for Anatomic Abnormalities of the Uterus: 

This involves restoration through removal of local lesions such as fibroids, scar tissue, and endometrial polyps or timely insertion of a cervical cerclage (a stitch placed around the neck of the weakened cervix) or the excision of a uterine septum when indicated. Treatment of Thin Uterine Lining: A thin uterine lining has been shown to correlate with compromised pregnancy outcome. Often this will be associated with reduced blood flow to the endometrium. Such decreased blood flow to the uterus can be improved through treatment with sildenafil and possibly aspirin. sildenafil (Viagra) Therapy. Viagra has been used successfully to increase uterine blood flow. However, to be effective it must be administered starting as soon as the period stops up until the day of ovulation and it must be administered vaginally (not orally). Viagra in the form of vaginal suppositories given in the dosage of 25 mg four times a day has been shown to increase uterine blood flow as well as thickness of the uterine lining. To date, we have seen significant improvement of the thickness of the uterine lining in about 70% of women treated. Successful pregnancy resulted in 42% of women who responded to the Viagra. It should be remembered that most of these women had previously experienced repeated IVF failures. Use of Aspirin: This is an anti-prostaglandin that improves blood flow to the endometrium. It is administered at a dosage of 81 mg orally, daily from the beginning of the cycle until ovulation.

 

Treating Immunologic Implantation Dysfunction with Selective Immunotherapy: 

Modalities such as intralipid (IL), intravenous immunoglobulin-G (IVIG),  heparinoids (Lovenox/Clexane), and corticosteroids (dexamethasone, prednisone, prednisolone) can be used in select cases depending on autoimmune or alloimmune dysfunction. The Use of IVF in the Treatment of RPL In the following circumstances, IVF is the preferred option: When in addition to a history of RPL, another standard indication for IVF (e.g., tubal factor, endometriosis, and male factor infertility) is superimposed and in cases where selective immunotherapy is needed to treat an immunologic implantation dysfunction.  The reason for IVF being a preferred approach when immunotherapy is indicated is that in order to be effective, immunotherapy needs to be initiated well before spontaneous or induced ovulation. Given the fact that the anticipated birthrate per cycle of COS with or without IUI is at best about 15%, it follows that short of IVF, to have even a reasonable chance of a live birth, most women with immunologic causes of RPL would need to undergo immunotherapy repeatedly, over consecutive cycles. Conversely, with IVF, the chance of a successful outcome in a single cycle of treatment is several times greater and, because of the attenuated and concentrated time period required for treatment, IVF is far safer and thus represents a more practicable alternative Since embryo aneuploidy is a common cause of miscarriage, the use of preimplantation genetic screening/ testing (PGS/T), with tests such as next generation gene sequencing (NGS), can provide a valuable diagnostic and therapeutic advantage in cases of RPL. PGS/T requires IVF to provide access to embryos for testing. There are a few cases of intractable alloimmune dysfunction due to absolute DQ alpha gene matching ( where there is a complete genotyping match between the male and female partners) where Gestational Surrogacy or use of donor sperm could represent the only viable recourse, other than abandoning treatment altogether and/or resorting to adoption. Other non-immunologic factors such as an intractably thin uterine lining or severe uterine pathology might also warrant that last resort consideration be given to gestational surrogacy. Conclusion:

 

Understanding the causes of pregnancy loss is crucial for individuals experiencing recurrent miscarriages. While chromosomal abnormalities are a common cause of sporadic early pregnancy losses, other factors such as uterine environment problems, immunologic implantation dysfunction, blood clotting disorders, and genetic or structural abnormalities can contribute to recurrent losses. By identifying the underlying cause, healthcare professionals can provide appropriate interventions and support to improve the chances of a successful pregnancy. The good news is that if a couple with RPL is open to all of the diagnostic and treatment options referred to above, a live birthrate of 70%–80% is ultimately achievable.

___________________________________________________________________

PLEASE SHARE THIS WITH OTHERS AND HELP SPREAD THE WORD!!

 

Herewith are  online links to 2  E-books recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

  1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) ; https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

 

  1. Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link ;https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

 

I invite you to visit my very recently launched “Podcast”,  “HAVE A BABY” on RUMBLE;   https://rumble.com/c/c-3304480

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com\

 

Name: Janeiry O

Consulta

Answer:

Please call my assistant, Patti Converse (702-533-2691 and set up an online consultation with me.

Geoff Sher

________________________________________________________________________________________________________________________

PLEASE SHARE THIS WITH OTHERS AND HELP SPREAD THE WORD!!

 

Herewith are  online links to 2  E-books recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

  1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) ; https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

 

  1. Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link ;https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

 

I invite you to visit my very recently launched “Podcast”,  “HAVE A BABY” on RUMBLE;   https://rumble.com/c/c-3304480

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com\

 

Name: Jesus S

Donde puedo donar esperma

Answer:

Please re-post in English!

Geoff Sher

Name: Billy R

Hello, I am 19 years old and I would like to donate sperm and I was wondering how much they paid per donation.

Answer:

Sorry!

 

I do not know. I suggest you call a sperm bank!

Geoff Sher

Name: Mike R

Hi,

We have a PGT-tested monosomy 19 blastocyst that is presently frozen. Mosaicism was not detected. We are no longer doing retrievals. The lab that conducted our PGT-A testing said Monosomy19 is in the group of genetically abnormal embryos that is safest to transfer because it will lead to early miscarriage or no implantation and will not lead to birth under any circumstance. Do you share the opinion that as a last resort transferring this embryo is a viable option with minimal risk?

Answer:

I would agree!  I would transfer the embryo, provided you undergo CVS or amniocentesis during pregnancy and are willing to consider pregnancy termination should there be a chromosomal fetal abnormality diagnosed.

Geoff Sher

Name: Victoria S

I am seeing Dr Klitz at Cny fertility. I have had two filled IUI and two filled IVF. I have no health history besides a tilted uterus. My husband, sperm mythology is low and abnormal, but does have some normal sperm. I have done a washout for his sperm. I would like to know if I should book a consultation or if this is enough For you to let me know if the medication regiment is good or is there anything that you would like to change?
may do antimicrobial levaquin flagyl valtrex 500 mg each for 30 d and diflucan 150 mg q week for 4 weeks
prp high vol at beg of cycle
strick to dr k carnivore
letrozole 5 mg x 5 or natural cycle trigger or opk
weekly lipids fish oil
lovenox 30 mg twice a day
prograf 1.5 mg twice a day
prednisone 10 mg twice a day
may do 1 or 2 embryos
no antihistamine
fet under anesthesia due to painful ets
may add metformin 500 mg xr

Answer:

If you’ve undergone in vitro fertilization (IVF) and didn’t achieve a successful pregnancy, you may be wondering why. It’s important to know that IVF outcomes can be unpredictable, but there are factors that can affect your chances. Let’s explore some common reasons for IVF failure in simpler terms.

  1. Age: A woman’s age is a significant factor in IVF success. Generally, women under 35 have a higher chance of getting pregnant through IVF, around 35-40% per embryo transfer. However, this success rate decreases as women get older. For women in their mid-forties, the success rate drops to under 5%. This decline is mainly because the quality of eggs decreases as women age, affecting their ability to develop normally.

 

  1. Egg/Embryo Competency: Apart from age, the quality and competency of embryos also affect IVF success. The quality of eggs and embryos is influenced by a woman’s age. However, for older women or those with fewer eggs, the specific IVF protocol used to stimulate the ovaries becomes crucial. A more aggressive approach may be needed to maximize the chances of success. Previously, it was thought that the uterus was better for embryo development than the lab environment. So, early-stage embryos were transferred to the uterus based on their appearance. However, we now know that embryos that have progressed further in development are more likely to be successful. Embryos that don’t reach the blastocyst stage within 5-6 days after fertilization are considered less competent and not suitable for transfer. Additionally, Preimplantation Genetic Sampling / Testing (PGS/T) allows us to check the chromosomes of embryos. This technique helps select the most competent embryos for transfer, especially for older women, those with fewer eggs, repeated IVF failures, and recurrent pregnancy loss.

 

  1. Number of Embryos Transferred: Some people believe that transferring more embryos increases the chances of success. While this may have some truth, it’s essential to know that if the problem lies with the ovarian stimulation protocol, transferring more embryos won’t solve it. Also, transferring more embryos doesn’t fix issues related to embryo implantation dysfunction, such as anatomical or immunologic problems. Moreover, multiple embryos can lead to higher-order multiple pregnancies, which pose risks. To minimize these risks, it’s generally recommended to transfer a maximum of two embryos, or even just one, especially when using eggs from young women.
  1. Implantation Dysfunction (ID): Implantation dysfunction is often overlooked as a cause of unexplained IVF failure, especially in young women with normal ovarian reserve and fertile partners. Failure to identify and address these issues can result in repeated IVF failures. If transferring competent embryos repeatedly fails to result in a viable pregnancy, implantation dysfunction should be considered. The most common causes include:
    1. Thin Uterine Lining: When the lining of the uterus is too thin, it can affect the embryo’s ability to implant and grow.
    2. Surface Lesions in the Uterus: Polyps, fibroids, or scar tissue in the uterus can interfere with embryo implantation.
    3. Immunologic Implantation Dysfunction (IID): Sometimes, the immune system can mistakenly attack the embryo, preventing successful implantation.
    4. Endocrine/Molecular Endometrial Receptivity Issues: Hormonal or molecular issues in the uterine lining can impact the embryo’s ability to attach and develop.
    5. Ureaplasma Urealyticum (UU) Infection: This infection in the cervical mucous and uterine lining can lead to unexplained early pregnancy loss or IVF failure. Both partners should be tested and treated if positive to prevent transmission.

Certain causes of infertility are difficult or impossible  to reverse, e.g.; advanced age of the woman, severe male infertility, and immunologic implantation dysfunction associated with certain specific genetic factors.

Understanding the common factors contributing to IVF failure can help you have informed discussions with your doctor and make decisions for future attempts. Factors like the number of embryos transferred and implantation dysfunction play significant roles. While success cannot be guaranteed, knowing these factors can guide you in maximizing your chances and addressing potential issues.

 _____________________________________________________

PLEASE SHARE THIS WITH OTHERS AND HELP SPREAD THE WORD!!

 

Herewith are  online links to 2  E-books recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

  1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) ; https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

 

  1. Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link ;https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

 

I invite you to visit my very recently launched “Podcast”,  “HAVE A BABY” on RUMBLE;   https://rumble.com/c/c-3304480

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com\

 

Name: Elia F

Hello,
I recently had an ET resulting in ectopic pregnancy.
I would like to have your opinion on whether this is frequent and in which cases.

Thanks

Answer:

    • ECTOPIC (“TUBAL”) PREGNANCY

     

     

    By definition, an ectopic pregnancy is a gestation that occurs outside of the uterine cavity.  The most common site is in the fallopian tube, but sometimes it can also occur in the ovary, the cervix, or even the abdominal cavity.  Estimates put the incidence of ectopic pregnancy at about one in 200 pregnancies; but it has been reported to occur in about one out of 30 pregnancies resulting from In Vitro Fertilization (IVF).  Ectopic pregnancy is one of the most dangerous complications of pregnancy.  If undetected, the ectopic pregnancy will continue to grow and will ultimately burst through the wall of the fallopian tube, often resulting in catastrophic intra-abdominal bleeding, which can even be fatal.

     

    The introduction of sophisticated sonographic and hormonal monitoring technology now makes it possible to detect an ectopic pregnancy much earlier than previously, …usually well in advance of it rupturing.  A decade or two ago, the diagnosis of an ectopic pregnancy, ruptured or not, was an indication for immediate laparotomy to avoid the risk of catastrophic hemorrhagic shock. This often resulted in the affected fallopian tube having to be completely removed, sometimes along with the adjacent ovary. 

     

    In the late 1980’s, early conservative surgical intervention by laparoscopy began replacing laparotomy (a wide incision made in the abdominal wall) for the treatment of ectopic pregnancy, often allowing the affected fallopian tube to be preserved and shortening the period of post-surgical convalescence.  In the 90’s, early detection combined with the advent of medical management with methotrexate (MTX) has all but eliminated the need for surgical intervention in the majority of patients.  If administered early enough, MTX will allow spontaneous resorbtion of the pregnancy and a dramatic reduction in the incidence of catastrophic bleeding.  This was especially true in ectopic pregnancies arising from In Vitro Fertilization, where the early progress of pregnancy is usually carefully monitored with hormone levels and ultrasound.

     

    Causes of Ectopic Pregnancy: The fertilization of the human egg normally takes place in the fallopian tube.  The embryo then travels into the uterus, where it implants into the endometrial lining 5-6 days after ovulation. Anything that delays the passage of the embryo down the fallopian tube can result in the embryo hatching and sending its “root system” into the wall of the fallopian tube and initiating growth within the tube.  One of the most common predisposing factors is pelvic inflammatory disease (PID) in which microorganisms, such as Chlamydia, and Gonococcus damage the inner lining (endosalpinx) and eventually also the muscular walls of the tube(s) by the formation of scar tissue.  The endosalpinx has a very complex and delicate internal architecture, with small hairs and secretions that help to propel the embryo toward the uterine cavity. Once damaged, this lining can never regenerate.  This is one of the reasons why women who manage to conceive following surgery to unblock fallopian tubes damaged by PID, have about a 1:4 chance of a subsequent pregnancy developing within the fallopian tube (ectopic).

     

    Congenital malformations of the fallopian tube, associated with shortening of, or small pockets and side channels within, the tube are capable of interrupting the smooth passage of the embryo down the fallopian tube, is another cause of an ectopic pregnancy. 

     

    A woman who has had one ectopic pregnancy has almost four times as great a risk of an ectopic in a future pregnancy and with every subsequent ectopic this risk increases dramatically. 

     

    Since the lining of the fallopian tube does not represent an optimal site for healthy implantation, a large percentage of pregnancies that gain early attachment to its inner lining will usually be absorbed before the woman even knows that she is pregnant.  This is often referred to as a tubal abortion.

     

     

    Clinical presentation: Classically women with an of ectopic pregnancy present with the following symptoms:

     

     

      

    1. In the early stages this is typically cramp-like in nature, located on one or another side of the lower abdomen. It is caused by spasm of the muscular wall of the fallopian tube(s).   When a tubal pregnancy ruptures the woman will usually experience an abrupt onset of severe abdominal followed by light headedness, coldness and clamminess and will often collapse due to shock. Her pulse will become rapid and thready and her blood pressure will drop. Miscarriage. Sometimes the woman will experience pain in the right shoulder. The reason for this is that that blood which tracts along the side of the abdominal cavity finds its way to the area immediately below the diaphragm, above the liver (on the patient’s right side), irritates the endings of the phrenic nerve, which supplies that part of the diaphragm. This results in the referral of the pain to the neck and the right shoulder. The clinical picture is often so typical that making the diagnosis usually presents no difficulty at all. However, with less typical presentations the most important conditions to differentiate from an ectopic pregnancy are: a ruptured ovarian cyst, appendicitis, acute pelvic inflammatory disease (PID), or an inevitable

     

    1. Vaginal bleeding. When a pregnancy inadvertently implants in the fallopian tube the lining of the uterus undergoes profound hormonal changes associated with pregnancy (primarily associated with the hormone progesterone). When the embryo dies, the lining of the uterus separates.  Initially, vaginal bleeding is dark and usually is quite scanty, even less than with a normal menstrual period.  In some cases, of ectopic pregnancy will bleeding is more severe, similar to that experienced in association with a miscarriage. This sometimes leads to ectopic pregnancy initially being misdiagnosis as a miscarriage and is the reason that we often want to examine the material that is passed vaginally, for evidence of products of conception.

     Diagnosis: The easiest and most common method of diagnosing an ectopic pregnancy is by tracking the rate of rise in the blood levels of hCG.  With a normal intrauterine pregnancy, these usually double every two days throughout the first few weeks. While a slow rate of increase in blood hCG usually suggests an impending miscarriage, it might also point to an ectopic pregnancy. Thus, the hCG blood levels should be followed serially until a clear pattern emerges. 

    A vaginal ultrasound examination usually will clinch the diagnosis by showing the ectopic pregnancy within a fallopian tube and if the tube has already ruptured or internal bleeding has occurred, ultrasound examination will inevitably detect the presence of free fluid into the abdominal cavity.

     If there has been a significant amount of intra-abdominal bleeding, irritation of the peritoneal membrane will cause the abdominal wall to become hard tense and, depending on the amount of internal bleeding abdominal distention will be evident. Palpation of the abdominal wall will evoke significant pain and when a vaginal examination is done, movement of the cervix will produce excruciating pain, especially on the side of the affected fallopian tube.

     Surgical Treatment: In questionable situations laparoscopy is usually performed for diagnostic purposes. If an ectopic pregnancy is in fact detected, a small longitudinal incision over the tubal pregnancy will allow its removal, without necessitating removal of the tube. (linear  salpingectomy).  Bleeding points on the fallopian tube can usually be accessed directly and appropriately ligated (tied) via the laparoscope. Sometimes the damage to the fallopian tube has been so extensive that the entire tube will require removal.

     On occasions where very severe intra-abdominal bleeding heralds a potential catastrophe, a laparotomy (an incision made to open the abdominal cavity) is performed to stop the bleeding post haste. In such cases a blood transfusion is usually required and may be life saving.

     Medical Treatment: The introduction of Methotrexate (MTX) therapy for treatment of ectopic pregnancy has profoundly reduced the need for surgery in most patients. MTX is a chemotherapeutic that kills rapidly dividing cells such as those present in the trophoblast (root system of the conceptus. Extremely low doses of MTX are used to treat ectopic pregnancy. Accordingly the side effects that are often associated with such chemotherapy when used for the treatment of other conditions are seldom seen. It is important to make certain that the tube has not ruptured before instituting such treatment.

    MTX is given by intramuscular injection. Prior to its administration, blood is drawn to get a baseline blood hCG level.  After the injection of MTX the patient is allowed to return home with strict instructions that she should always have someone with her and never be alone in the ensuing week. The concern is that were the patient to be on her own and an intraabdominal bleed were to occur, she might not readily be able to access someone who could get her to the hospital immediately.  Instructions are also given to look for early signs that might point towards severe intra-abdominal bleeding such as the sudden onset of severe pain, light-headedness or fainting. 

     The patient returns to the doctor’s office four days later to check the blood hCG level.  Three days later (7 days after MTX), the level is checked again.  By this time the hCG level should have dropped at least 15% from the value on day 4.  If not, a second MTX injection is given and the blood levels are tested twice weekly until hCG level is undetectable.  Once this occurs, vaginal bleeding will usually ensue within a week or two. 

    It is important to note, especially in cases where more than one embryo or blastocyst has been transferred to the uterine cavity or fallopian tube (as with Tubal embryo transfer –TET/ZIFT), that implantation may occur in two sites simultaneously (i.e. in the fallopian tube as well as inside the uterine cavity).  This is referred to as a heterotopic pregnancy.  It is therefore important that before administering MTX, which will cause the death and absorption of any early pregnancy, that the physician makes certain that he/she is not dealing with a heterotopic pregnancy.  In such cases, surgery is required to treat the tubal ectopic, while every precaution is taken to protect the pregnancy growing within the uterine cavity.

    Recent advances in the field of ultrasound diagnosis along with the introduction of MTX therapy have revolutionized the treatment of ectopic pregnancy and have significantly reduced both the high morbidity and mortality rates, previously associated with this condition.  

     When an ectopic pregnancy occurs following infertility treatment, there is the added advantage that the physician will be on the lookout for the earliest possible signs of trouble.  The performance of a vaginal ultrasound within two weeks of a positive blood pregnancy (HCG) test following IVF allows for early detection of the unruptured pregnancy and timely intervention with MTX and/or laparoscopy.Missed menstrual period: Although some patients will have spotting or other abnormal bleeding.  The pregnancy test will be positive in such cases.Vaginal bleeding. When a pregnancy inadvertently implants in the fallopian tube the lining of the uterus undergoes profound hormonal changes associated with pregnancy (primarily associated with the hormone progesterone). When the embryo dies, the lining of the uterus separates.  Initially, vaginal bleeding is dark and usually is quite scanty, even less than with a normal menstrual period.  In some cases, of ectopic pregnancy will bleeding is more severe, similar to that experienced in association with a miscarriage. This sometimes leads to an ectopic pregnancy initially being misdiagnosed as a miscarriage and is the reason to examine the material that is passed vaginally, for evidence of products of conception.

 

 

 

 

Name: Estefany S

Me gustaria saber información para donar mis ovulos ?

Answer:

Please re-post in English!

Geoff Sher

Name: Christina G

My hcg level went from 960 to 2764 is that normal? Just found out I’m pregnant

Answer:

Likely suggests  a viable pregnancy.

Congratulations and good luck!

 

Geoff Sher.

 

Name: Lynne D

Is this dr Geoff Sher who was born in Cape Town South Africa
I am dr lynne d, went to ellerslie

Answer:

Yes! This is he but I was born in George, CP!.

 

Geoff Sher

Name: Kristina L

I have read about increasing primordial follicles and thus increasing the antral follicle count by using HGH for 70 days, after ovarian PRP. Is there long term affects for the mother either during use of HGH or from withdrawal affect during pregnancy, and if HGH or withdrawal can hurt the resulting the fetus? If not, would there be continued benefit to continue the HGH into the stimulation protocol to increase egg quality further? Very interested to hear your take. Loving your blogs!

Answer:

This is very controversial. I am not at all convinced of its benefit!

 

Geoff Shert

Author