Ask Our Doctors

Supporting Your Journey

Our Medical Directors are outstanding physicians that you will find to be very personable and compassionate, who take care to ensure that you have the most cutting-edge fertility treatments at your disposal. This is your outlet to ask your questions to the doctors.

  • Dear Patients,

    I created this forum to welcome any questions you have on the topic of infertility, IVF, conception, testing, evaluation, or any related topics. I do my best to answer all questions in less than 24 hours. I know your question is important and, in many cases, I will answer within just a few hours. Thank you for taking the time to trust me with your concern.

    – Geoffrey Sher, MD

Fill in the following information and we’ll get back to you.

Please enable JavaScript in your browser to complete this form.
Name
Disclaimer

failed ivf

Name: tammy S

i’m 40 years old,my AHM is 0.89. i was undergoing an ivf which failed. they got 6 eggs,5 mature,i embryo was slowly groing ending up not sticking after transfering.
later the doctir told me they examined my eggs and came to conclusion that they were post mature.
i was stimmed from the second day of my cycle with gonal-f (225) at mirning,and gonal f (225) and Luveris (225) at evening for 6 days, then gonal f 4450 one shot and luverus 225 at tge 7th day,day 8 triggered ,orgalutran 250 at morning and burselin 1000 and ovidrel 250 at night. next day no med.
day 10 was retrieval
what do you suggest,i found you very informative regarding the best protocol for my cases.

thanks alot

Author

Answer:

It is primarily the egg (rather than the sperm) that determines the chromosomal integrity (karyotype) of the embryo, the most important determinant of egg/embryo competency”. A “competent” egg is therefore one that has a normal karyotype and has the best potential to propagate a “competent” embryo. In turn, a “competent embryo is one that possesses the highest potential to implant and develop into a normal, healthy, baby.

When it comes to reproductive performance, humans are the least efficient of all mammals. Even in young women under 35y, at best only 2 out of 3 eggs are chromosomally numerically normal (euploid). The remainder will have an irregular number of chromosomes (aneuploid) and are thus “incompetent”. The incidence of egg aneuploidy increases with age such by age 39 years, 3 in 4 are “competent”, and by the mid-forties, at best one in 10 are likely to be aneuploid. The fertilization of an aneuploid egg will inevitably lead to embryo aneuploidy (“incompetence”). As previously stated,   an aneuploid embryo cannot propagate a normal pregnancy

Within 38-42 hours of the initiation of the spontaneous pre-ovulatory luteinizing hormone (LH) surge (and also following administration of the human chorionic gonadotropin (hCG) “trigger” shot, given to induce egg maturation after ovarian stimulation with fertility drugs), the egg embarks on a rapid maturational process that involves halving of its 46 chromosomes to 23. During this process, (known as meiosis) 23 chromosomes are retained within the nucleus of the egg while the remaining 23 chromosomes are expelled in a membrane envelopment, from the egg nucleus. This small structure known as the polar body, comes to lie immediately below the “shell” of the egg (the zona pellucida) and is known as the 1st polar body or PB-1. The sperm, in the process of its maturation also undergoes meiosis divides into two separate functional gametes, each containing 23 chromosomes (half its original number of 46 chromosomes).  With subsequent fertilization, the 23 chromosomes of the egg now fuse with the 23 chromosomes of the mature sperm resulting in the development of an embryo with  46 chromosomes (the normal human genome) comprising a combination of the genetic material from both partners. For the embryo to have exactly 46 chromosomes (the euploid number), both the mature egg and mature spermatozoon must contain exactly 23 chromosomes. Only such euploid embryos are “competent” (capable of developing into healthy babies). Those with an irregular number of chromosomes (aneuploid embryos) are “incompetent” and are incapable of propagating healthy babies. While embryo “incompetence” can result from either egg or sperm aneuploidy, it usually stems from egg aneuploidy. However, in cases of moderate or severe male factor infertility, the sperm’s contribution to aneuploidy of the embryo can be significantly greater.

While embryo ploidy (numerical chromosomal integrity) is not the only determinant of its “competency, it is by far the most important and in fact is a rate-limiting factor in human reproduction. It is causal in the vast majority of cases of “failed nidation which in turn is responsible for most cases of a failed pregnancy (natural or assisted) and causes most sporadic early pregnancy losses (both chemical gestations and miscarriages) as well as  many chromosomal birth defects such as Turner syndrome (X-monosomy ) Down syndrome (trisomy 21) and Edward syndrome (trisomy 18) .

In most cases, embryos that develop too slowly as well as those that grow too fast (i.e. ones that by day 3 post-fertilization comprise fewer than 6 cells or more than 9 cells) and/or embryos that contain cell debris or “fragments” are usually aneuploid and are thus unable to propagate a healthy pregnancy (“incompetent”). Additionally, embryos that fail to survive in culture to the blastocyst stage are also almost always aneuploid/”incompetent”.

At a certain point in the later stage of a woman’s reproductive career, the number of remaining eggs in her ovaries falls below a certain threshold, upon which she is unable to respond optimally to fertility drugs. Often times this is signaled by a rising day 3 basal blood follicle stimulating hormone (FSH) level (>9.0MIU/ml) and a falling blood anti-Mullerian hormone (AMH) level (<2.0ng/ml or <15nmol/L). Such women who have  diminished ovarian reserve (DOR) produce fewer eggs in response to ovarian stimulation. While DOR is most commonly encountered in women over 40 years of age it can and indeed also can occur in much younger women.

A few important (but often overlooked concepts should be considered in this regard:

  • Age: It is advancing chronologic age and NOT declining ovarian reserve (as evidenced by abnormal blood AMH or FSH that results in an increased incidence of egg/embryo “incompetence” due to aneuploidy
  • The ovaries and developing eggs of women with DOR (regardless of age) are highly susceptible to the adverse effect of excessive Luteinizing Hormone (LH)-induced, ovarian overproduction of male hormones (e,g. testosterone and androstenedione). While a little testosterone produced by the ovary promotes normal follicle growth and orderly egg development excessive testosterone has a converse effect. That is why in older women and those who regardless of their age have DOR (and thus excessive LH bioavailability and increased ovarian testosterone production), the use of ovarian stimulation protocols that fail to down-regulate LH activity prior to initiating ovarian stimulation with gonadotropins, often prejudices egg/embryo quality and IVF outcome.
  • Simply stated, while age is certainly the most important factor in determining the incidence of egg/embryo aneuploidy, women with DOR (regardless of their age), are less likely to propagate euploid (competent) eggs/embryos. While virtually nothing can be done to lower the incidence of age related aneuploidy, it is indeed possible to avoid a further decrease in egg/embryo “competency”  by individualizing the protocols of ovarian stimulation used.
  • My preferred protocols for women who have relatively normal ovarian reserve:
  • The conventional long pituitary down regulation protocol: BCP are commenced early in the cycle and continued for at least 10 days. Starting 3 days before the BCP is to be discontinued, it is overlapped with an agonist such as Lupron 10U daily for three (3) days and continued until menstruation begins (which should ensue within 5-7 days of stopping the BCP). At that point an US examination is done along with a baseline measurement of blood estradiol to exclude a functional ovarian cyst. Daily Lupron (10U) is continued and an FSH-dominant gonadotropin such as Follistim, Puregon or Gonal-f daily is administered daily falong with 37.5U of Menopur (an FSH/LH combination) for 2 days. On the 3rd day the gonadotropin dosage is reduced by about one half and the dosage of Menopur is increased to 75U daily. Daily ultrasound and blood estradiol measurements are conducted starting on the 7th or 8th day of gonadotropin administration and continued until daily ultrasound follicle assessments indicate that most follicles have fully developed. At this point egg maturation is “triggered” using an intramuscular injection of a recombinant hCGr (Ovidrel) 500mcg or urinary derived hCGu (Pregnyl/Profasi/Novarel) 10,000U. And an egg retrieval is scheduled for 36h later.
  • The agonist/antagonist conversion protocol (A/ACP): This is essentially the same as the conventional long down regulation protocol (see “a”-as above), except that with the onset of post-BCP menstruation, the agonist is supplanted by daily administration of a GnRH antagonist (e.g. Ganirelix, Cetrotide or Orgalutron) at a dosage of 125-250mcg daily until the day of the “trigger”. When it comes to women who have DOR I favor the use of the A/ACP, adding supplementary human growth hormone (HGH). In cases where the DOR is regarded as severe (AMH=<0.2), I often augment  the AACP protocol by using estrogen priming for 7-9 days prior to or with the commencement of gonadotropin therapy; For this I prescribe E2 skin patches  or intramuscular  estradiol valerate (Delestrogen), prior to or sometimes concurrent with, the  commencement of the GnRH antagonist administration.
  • The following Ovarian stimulation protocols are in my opinion best avoided in stimulating olderf women and /or thosed who regardless of age , have  DOR :
  1. Microdose agonist (e.g. Lupron) “flare” protocols which result in an out-pouring of pituitary-LH at the critical time that ovarian follicles and eggs start developing/growing.
  2. High dosages of LH -containing fertility drugs (e.g. Menopur).
  3. Supplementation with preparations that are testosterone-based
  4. Supplementation with DHEA (which is converted to testosterone in the ovaries.
  5. Clomiphene citrate or Letrozole which cause increased release of LH and thus increase ovarian male hormone (testosterone and androstenedione output.
  6. “Triggering” egg maturation using too low a dosage of hCG (e.g. 5,000U rather than 10,000U) or Ovidrel (e.g. 250mcg of Ovidrel rather than 500mcg)
  7. “Triggering” women who have DOR, with an agonist (alone)such as Lupron Superfact/ Buserelin/Aminopeptidyl/Decapeptyl.
  • Preimplantation Genetic Screening (PGS):

The introduction of preimplantation genetic testing/screening (PGT/PGS) for e permits identification of all the chromosomes in the egg and embryo (full karyotyping) allowing for the  identification of the most “competent” (euploid) embryos for selective transfer to the uterus. This vastly improves the efficiency and success of the IVF process and renders us fare better equipped us to manage older women and those who regardless of their age, have DOR.

Hoshimoto’s question

Name: Katharine C

Dear Dr. Sher,
I’ve been following your comments for years. Thanks for the info. on 2 shots of Ovidrel. I’m interested in what you say here about Hoshimoto’s and what you call “Immunologic Implantation Dysfunction.” You mention that 50% of women (with or without Hoshimoto’s/full-blown hypothyroidism) will have this IDD due to the thyroid anti-bodies. Is this your hypothesis or is this based on a study you have done or data that you are aware of? Do you have any material I could see apart from this one case? How did you arrive at the 50%? Is speculative wisdom from what you’ve witnessed at your own practice? I’m a huge admirer, but I’m honestly confused as to where this information is coming from. Would love to know! Many thanks, Katharine

Author

Answer:

I published on this 25y ago.

Sher G, Maassarani G, Zouves C, Feinman M, Sohn S, Matzner W, Chong P, Ching W. “The use of Combined Heparin/Aspirin and Immunoglobulin G. Therapy in the Treatment of IVF Patients with Antithyroid Antibodies” Am J Repr Immunol, 1998; 39:223-5.

Ivf failure and suspect endometriosis

Name: Isma B

Hi Dr Sher

I have been trying to conceive for 3 years now with no success. I’ve recently had 1 failed ivf cycle where I began bleeding 7 days post embryo transfer. Which I believe is implantation failure.

I have a history of heavy painful periods, stomach problems such as diarrhea and bloating, mid cycle bleeding (i spot randomly at any point during the cycle and it feels like having a mini period as i spot and have pain at the same time), painful ovulation. I suspect that I have endometriosis however my doctor refused to investigate further and said I only have hormonal imbalance. However, I have heard that endometriosis and estrogen dominance go hand in hand.

A year before pursuing ivf, I had a hysteroscopy which showed that I didn’t have any polyps and my uterus is normal. My question to you is that can you detect endometriosis with hysteroscopy and should I continue to push my doctor for endometriosis diagnosis.

I also want to ask you that I suffer from allergies such as hayfever, does this make my immune system overactive and creates more natural killer cells?

Author

Answer:

often advised to first try ovarian stimulation (ovulation Induction) with intrauterine insemination (IUI) ………as if to say that this would be just as likely to result in a baby as would in vitro fertilization (IVF). Nothing could be further from reality It is time to set the record straight. And hence this communication!

Bear in mind that the cost of treatment comprises both financial and emotional components and that it is the cost of having a baby rather than cost of a procedure. Then consider the fact that regardless of her age or the severity of the condition, women with infertility due to endometriosis are several fold more likely to have a baby per treatment cycle of IVF than with IUI. It follows that there is a distinct advantage in doing IVF first, rather than as a last resort.

So then, why is it that ovulation induction with or without IUI is routinely offered proposed preferentially to women with mild to moderately severe endometriosis? Could it in part be due to the fact that most practicing doctors do not provide IVF services but are indeed remunerated for ovarian stimulation and IUI services and are thus economically incentivized to offer IUI as a first line approach? Or is because of the often erroneous belief that the use of fertility drugs will in all cases induce the release (ovulation) of multiple eggs at a time and thereby increase the chance of a pregnancy. The truth however is that while normally ovulating women (the majority of women who have mild to moderately severe endometriosis) respond to ovarian stimulation with fertility drugs by forming multiple follicles, they rarely ovulate > 1 (or at most 2) egg at a time. This is because such women usually only develop a single dominant follicle which upon ovulating leaves the others intact. This is the reason why normally ovulating women who undergo ovulation induction usually will not experience improved pregnancy potential, nor will they have a marked increase in multiple pregnancies. Conversely, non-ovulating women (as well as those with dysfunctional ovulation) who undergo ovulation induction, almost always develop multiple large follicles that tend to ovulate in unison. This increases the potential to conceive along with an increased risk multiple pregnancies.

 

So let me take a stab at explaining why IVF is more successful than IUI or surgical correction in the treatment of endometriosis-related infertility:

  1. The toxic pelvic factor: Endometriosis is a condition where the lining of the uterus (the endometrium) grows outside the uterus. While this process begins early in the reproductive life of a woman, with notable exceptions, it only becomes manifest in the 2ndhalf of her reproductive life. After some time, these deposits bleed and when the blood absorbs it leaves a visible pigment that can be identified upon surgical exposure of the pelvis. Such endometriotic deposits invariably produce and release toxins” into the pelvic secretions that coat the surface of the membrane (the peritoneum) that envelops all abdominal and pelvic organs, including the uterus, tubes and ovaries. These toxins are referred to as “the peritoneal factor”. Following ovulation, the egg(s) must pass from the ovary (ies), through these toxic secretions to reach the sperm lying in wait in the outer part the fallopian tube (s) tube(s) where, the sperm lie in waiting. In the process of going from the ovary(ies) to the Fallopian tube(s) these eggs become exposed to the “peritoneal toxins” which alter s the envelopment of the egg (i.e. zona pellucida) making it much less receptive to being fertilized by sperm. As a consequence, if they are chromosomally normal such eggs are rendered much less likely to be successfully fertilized. Since almost all women with endometriosis have this problem, it is not difficult to understand why they are far less likely to conceive following ovulation (whether natural or induced through ovulation induction). This “toxic peritoneal factor impacts on eggs that are ovulated whether spontaneously (as in natural cycles) or following the use of fertility drugs and serves to explain why the chance of pregnancy is so significantly reduced in normally ovulating women with endometriosis.
  2. The Immunologic Factor: About one third of women who have endometriosis will also have an immunologic implantation dysfunction (IID) linked to activation of uterine natural killer cells (NKa).  This will require selective immunotherapy with Intralipid infusions, and/or heparinoids (e.g. Clexane/Lovenox) that is much more effectively implemented in combination with IVF.
  3. Surgical treatment of mild to moderate endometriosis does not usually improve pregnancy potential:. The reason is that endometriosis can be considered to be a “work in progress”. New lesions are constantly developing. So it is that for every endometriotic seen there are usually many non-pigmented deposits that are in the process of evolving but are not yet visible to the naked eye and such evolving (non-visible) lesions can also release the same “toxins that compromise fertilization. Accordingly, even after surgical removal of all visible lesions the invisible ones continue to release “toxins” and retain the ability to compromise natural fertilization. It also explains why surgery to remove endometriotic deposits in women with mild to moderate endometriosis usually will fail to significantly improve pregnancy generating potential. In contrast, IVF, by removing eggs from the ovaries prior to ovulation, fertilizing these outside of the body and then transferring the resulting embryo(s) to the uterus, bypasses the toxic pelvic environment and is therefore is the treatment of choice in cases of endometriosis-related infertility.
  4. Ovarian Endometriomas: Women, who have advanced endometriosis, often have endometriotic ovarian cysts, known as endometriomas. These cysts contain decomposed menstrual blood that looks like melted chocolate…hence the name “chocolate cysts”. These space occupying lesions can activate ovarian connective tissue (stroma or theca) resulting in an overproduction of male hormones (especially testosterone). An excess of ovarian testosterone can severely compromise follicle and egg development in the affected ovary. Thus there are two reasons for treating endometriomas. The first is to alleviate symptoms and the second is to optimize egg and embryo quality. Conventional treatment of endometriomas involves surgical drainage of the cyst contents with subsequent removal of the cyst wall (usually by laparoscopy), increasing the risk of surgical complications. We recently reported on a new, effective and safe outpatient approach to treating endometriomas in women planning to undergo IVF. We termed the treatment ovarian Sclerotherapy.  The process involves; needle aspiration of the “chocolate colored liquid content of the endometriotic cyst, followed by the injection of 5% tetracycline hydrochloride into the cyst cavity. Such treatment will, more than 75% of the time result in disappearance of the lesion within 6-8 weeks. Ovarian sclerotherapy can be performed under local anesthesia or under conscious sedation. It is a safe and effective alternative to surgery for definitive treatment of recurrent ovarian endometriomas in a select group of patients planning to undergo IVF

 

 

 I am not suggesting that all women with infertility-related endometriosis should automatically resort to IVF. Quite to the contrary…. In spite of having reduced fertility potential, many women with mild to moderate endometriosis can and do go on to conceive on their own (without treatment). It is just that the chance of this happening is so is much lower than normal.

IN SUMMARY: For young ovulating women (< 35 years of age ) with endometriosis, who have normal reproductive anatomy and have fertile male partners, expectant treatment is often preferable to IUI or IVF. However, for older women, women who (regardless of their age) have any additional factor (e.g. pelvic adhesions, ovarian endometriomas, male infertility, IID or diminished ovarian reserve-DOR) IVF should be the primary treatment of choice.

 

I strongly recommend that you visit www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select.  Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

  • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
  • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
  • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
  • The Fundamental Requirements For Achieving Optimal IVF Success
  • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
  • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF:
  • The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
  • Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
  • Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
  • Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
  • Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management: (Case Report)
  • Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
  • Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
  • Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
  • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas
  • Should IVF Treatment Cycles be provided uninterrupted or be Conducted in 7-12 Pre-scheduled “Batches” per Year
  • A personalized, stepwise approach to IVF
  • How Many Embryos should be transferred: A Critical Decision in IVF?
  • Endometriosis and Immunologic Implantation Dysfunction (IID) and IVF
  • Endometriosis and Infertility: Why IVF Rather than IUI or Surgery Should be the Treatment of Choice.
  • Endometriosis and Infertility: The Influence of Age and Severity on Treatment Options
  • Early -Endometriosis-related Infertility: Ovulation Induction (with or without Intrauterine Insemination) and Reproductive Surgery Versus IVF
  • Treating Ovarian Endometriomas with Sclerotherapy.
  • Effect of Advanced Endometriosis with Endometriotic cysts (Endometriomas) on IVF Outcome & Treatment Options.
  • Deciding Between Intrauterine Insemination (IUI) and In Vitro Fertilization (IVF).
  • Intrauterine Insemination (IUI): Who Needs it & who Does Not: Pro’s &
  • Induction of Ovulation with Clomiphene Citrate: Mode of Action, Indications, Benefits, Limitations and Contraindications for its use
  • Clomiphene Induction of Ovulation: Its Use and Misuse!

 

 

 

______________________________________________________

ADDENDUM: PLEASE READ!!

INTRODUCING SHER FERTILITY SOLUTIONS (SFS)

Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

 

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or,  enroll online on then home-page of my website (www.SherIVF.com). 

 

PLEASE SPREAD THE WORD ABOUT SFS!

 

Geoff Sher

 

Hormone-producing simple cyst found at baseline scan

Name: Charlotte D

Dear Dr Sher,

I recently had a baseline scan and oestrogen and progesterone blood tests for an upcoming FET cycle. The scan and blood tests identified a 2.5cm hormone-producing simple cyst on my left ovary. I have been prescribed 21 days of Provera (2 x 10mg tablets daily), which I’m told usually resolves these cysts. How long does it normally take for simple cysts of this size to resolve? Is this course of Provera likely to resolve the cyst within 3 weeks?

Thank you!

Author

Answer:

Yes! It is likely to cause the functional cyst to absorb by the next period!

An ovarian cyst is any collection of fluid, surrounded by a very thin wall, within an ovary. An ovarian follicle that is larger than 22mm is termed a functional follicular cyst. They are non-malignant (benign) and harmless and in most cases, don’t even cause symptoms, however, in some cases, rapid distention of the cyst , or rupture with bleeding , can lead to sudden and severe pain and in some cases, a disruption in hormone balance leads to vaginal bleeding.

 

There are 2 varieties of “functional ovarian cysts:

  1. Follicle Cysts: In menstruating women, a follicle containing the unfertilized egg will rupture during ovulation. If this does not occur, a follicular cyst of more than 2.5 cm diameter may result. These cysts develop in response to stimulation with follicle stimulating hormone that is either self-produced (by the woman’s own pituitary gland (endogenous) or is induced by agonists (e.g. Lupron/Decapeptyl/Buserelin) that sometimes propagate increased and sustained pituitary FSH release.
  2. Corpus luteum cysts: These appear after ovulation or egg retrieval. The corpus luteum is the remnant of the follicle after the ovum has moved to the fallopian tubes. It usually degrades within 5-9 days. A corpus luteum of > 3 cm is regarded as being cystic.

 

A:Follicular cysts: These lesions have special relevance in women about to undergo controlled ovarian stimulation (COS) with gonadotropins for IVF where they can literally, “throw a spanner in the works”, causing a delay, postponement and sometimes even cancellation of the cycle of treatment.

 

Functional Ovarian cysts must be distinguished from “non-functional or cystic ovarian tumors”. By definition, “tumors are capable of independent growth.  Thus “cystic ovarian tumors do not develop as a result of exposure to gonadotropin stimulation and it is this feature that distinguishes them from “functional” ovarian cysts.

 

Aside from sometimes causing pain and dysfunctional uterine bleeding, unruptured follicular cysts are usually relatively non-problematic. As stated above, in some cases, functional “cysts” undergo rapid distention (often as a result of a minor degree of bleeding inside the cyst itself). In such cases the woman will often experience a sharp or aching pain on one or other side of her lower abdomen and/or deep seated pain during intercourse. The cysts may even rupture, causing sudden lower abdominal pain that exacerbates and may even simulate an attack of acute appendicitis or a ruptured ectopic (tubular) pregnancy. While very unpleasant, a ruptured “functional cyst” seldom produces a degree of internal bleeding that warrants surgical intervention. The pain, typically is made worse by movement. It stabilizes within a number of days but subsides progressively to disappear within about four to seven days.

 

Whenever an ovarian cyst is detected (usually by ultrasound examination), the first consideration should be to determine whether it is a “functional cyst or a “cystic ovarian tumor”. The reason for this is that tumors are subject to a variety of complications such as twisting (torsion), hemorrhage, infection and even malignant change, all of which usually will require surgical intervention.

 

Gonadotropin releasing hormone agonists (GnRHa) such as Lupron, Buserelin, Nafarelin and Synarel, administered daily, starting a few days prior to menstruation, all elicit an initial and rapid, out-pouring (“surge”) in pituitary LH and FSH release. This “surge” lasts for a day or two. Then as the pituitary reservoir of FSH and LH becomes depleted, the blood FSH and LH levels fall rapidly reaching near undetectable blood levels within a day or two. At the same time, the declining FSH result in a drop in blood E2 concentration leading to a withdrawal bleed (menstruation). The progressive exhaustion of Pituitary FSH/LH along with the decline in blood E2, is referred to as ” down-regulation” The continued daily administration of GnRHa or its replacement (supplanting)  with a GnRH antagonist (e.g. Ganirelix, Cetrotide or Orgalutron) results in blood LH concentrations being sustained at a very low level throughout the ensuing cycle of controlled ovarian hyperstimulation (COH) with gonadotropins, thereby optimizing follicular maturation and promoting E2 induced endometrial proliferation.

 

Functional follicular cysts resulting from controlled ovarian stimulation (COS), can occur regardless of whether down regulation with GnRHa (Lupron/Buserelin/Decapeptyl) is initiated in cases where the cycle of stimulation is launched with the woman coming off  a BCP or when the agonist is initiated on day 20-23  (the mid luteal phase) of a natural cycle. When this happens it is due to the initial agonist-induced FSH “surge” sometimes so accelerating follicular growth that it leads to the development of one or more “functional follicular cysts”. These cysts release E2 and cause the blood E2 often to remain elevated (>70pg/ml). Depending on the extent of this effect, it sometimes leads to a delay in the onset of menstruation and thus also to deferment in the initiation of COS.

 

Failure of menstruation to commence within 4-7 days of initiating treatment with GnRHa suggestive of an underlying “functional ovarian cyst” and calls for an ultrasound examination to make the diagnosis. Once diagnosed, depending upon the number and size of cysts detected. There are two therapeutic options:

  • Wait for the cyst to absorb spontaneously and for menstruation to ensue: While it at first might seem that this approach of continuing GnRHa therapy in order to cause absorption of the cyst(s) within a week or two might be a good approach , it often has unintended consequences. First there is the real possibility that prolonged uninterrupted GnRHa therapy might blunt subsequent ovarian follicular response to gonadotropin therapy and second, if menstruation does not follow within 10-14 days, the cycle will usually need to be cancelled.
  • Immediate needle aspiration of the cyst(s) under local anesthesia. I personally favor needle aspiration, sooner rather than later in such cases. Menstruation will usually follow a successful aspiration within 2-4 days. Upon menstruation a blood E2 level is measured and as soon as it drops below 70pg/ml COS can be initiated.

 

  1. Corpus Luteum cysts: As with follicular cysts, so at times do Corpus Luteum cysts also bleed, distend and cause fain. They often delay onset of spontaneous menstruation by a week or longer (Halban syndrome”.). In isolated cases, internal bleeding within the cyst substance causes pain, rapid enlargement of the lesion and by ultrasound examination reveals local areas of absorption causing it to appear as a “complex” cystic lesion that simulates a tumor, prompting surgical intervention. Sadly, there are countless cases where women have had an entire ovary removed due to this happening.

 

“Functional ovarian cysts” rarely present as a serious health hazard. In the vast majority of cases they spontaneously resolve within 2-4 weeks while “cystic tumors” will not. Accordingly, the persistence of any ovarian cyst that persists for longer than 4 weeks should raise suspicion of it being a tumor rather than with a “functional cyst”. Since ovarian tumors can be (or become) malignant, all ovarian cysts that persist for longer than 6 weeks (whether occurring in non-pregnant or pregnant women), should be considered for surgical removal and this should be followed by pathological analysis.

Good luck!

 

Geoff Sher

Embryo donation

Name: Patrick R

We have an extra embryo to donate to another couple or science. What are our options?

Author

Answer:

Please call 646-792–7476 and ask for Bushra Sudal RN. She will be glad to assist you.

Estradiol maximum levels before FET

Name: Jimena A

Good day Dr. Geoffrey,
I salute you from Mexico City. I’m in the mieddle of the preparatios for the FET, and I want to know what should the maximium estradiol levels be at the day before my FET. Today I’m on day 13 of my cycle and my endometrium is meassuring 9 mm.
Thank you very much for your time. Best regards,
Jimena

Author

Answer:

I prescribe twice weekly injections of estradiol valerate (Delestrogen). Using this approach, I aim for peak E2 values ranging between 500 and 1000pg/ml!

Good luck!

 

 

Scroll to Top