Ask Our Doctors

Dear Patients,

I created this forum to welcome any questions you have on the topic of infertility, IVF, conception, testing, evaluation, or any related topics. I do my best to answer all questions in less than 24 hours. I know your question is important and, in many cases, I will answer within just a few hours. Thank you for taking the time to trust me with your concern.

– Geoffrey Sher, MD

Fill in the following information and we’ll get back to you.

Name: Shakema M

Im answering the add that says ivf no cost

Answer:

Sorry! I have no knowledge of this!

 

Geoff Sher

Name: Chinwe O

I want to do IVF for triplets but I’m 50+. I’m still seeing my circle but this April, it came out one day and stopped

Answer:

Given the natural and inevitable decline in “egg competency and ovarian reserve with advancing age,   the chance of conceiving on your own or through IVF with own eggs is remote.

 

So sorry!

 

Geoff Sher

Name: Anna L

Hello doctor,
I spoke with your office, and I understand that you do not follow women’s hormones throughout pregnancy. You help women get pregnant and then pass them to an OB. I’m working with a high-risk OB, but because I had two c-sections previously. I did have one miscarriage once before. After that I happened to have a pregnancy while seeing a GP that works based on NaProTechnology and prescribes bio-identical progesterone during pregnancy. I had a successful pregnancy in 2021, but my levels looked good without the hormone, so I stopped taking that at 20 weeks. I’m pregnant now and my GP has been testing my progesterone and it is much lower than my last pregnancy. I did not go to a fertility clinic before, and my high-risk OB wants nothing to do with looking at my levels. I’m really at a loss for where to go to have a conversation about the use of progesterone and maintaining a pregnancy. My GP said, “the progesterone keeps the baby where it is supposed to be.” So basically, if it drops low I could go into pre-term labor. Based on my conversations with the OB, they would only prescribe progesterone if I had multiple miscarriages. It seems weird to me that someone that does not ever track progesterone could even figure out who needs it and who does not. I know this isn’t what you do, but where can I go to get an opinion about continuing to use progesterone? I’m 31 weeks pregnant and my current GP would have me take this dose of 400mg vaginally twice daily until 37 weeks. I live in Flemington, NJ, but I’m willing to travel. I could try and find another OB, but I thought maybe a fertility clinic would know something about what is usually done during pregnancy to reach full term successfully. I have blood work every two weeks before taking my morning dose and I wanted to discuss these levels with a competent doctor or clinic to get a second opinion.

Answer:

With very few exceptions. I am not a believer in their being any benefit through  progesterone supplementation throughout pregnancy.

 

Geoff Sher

Name: barbara a

como puedo hacer para ser donante de ovulos

Answer:

Please re-post in English!

 

Geoff Sher

Name: Avery C

I am writing to ask for advice on the proper protocol for me.

Background: I am 32 years old, with a normal BMI. My AMH is 0.11, and my AFC is 3. My husband has male-factor infertility that requires IVF.

For my first round, I stimmed for 23 days. The doctor used 50 mg Clomid (morning/night), Dexamethasone (morning), 300 Gonal (morning), 150 Menopur (PM), and Cetrotide (at night, starting day 17). On day 11 of my first cycle, I was not showing any growth, so the doctor had me discontinue Gonal and Menopur but continue Clomid and Dexamethasone. On day 15, the doctor had me add Menopur back in. This round resulted in 3 eggs being retrieved, resulting in Day 6 5AA and Day 7 5BB embryos, with 1 embryo testing PGT-A normal.

For my second round, my doctor removed Gonal completely and prescribed 50 mg of Clomid (morning and night), Dexamethasone (morning), 150 mg of Menopur (PM, starting day 6), and Cetrotide (starting day 9). This round was canceled on day 10 as I had only 1 lead follicle.

I have spoken with my doctor, and he wants to stay with the same protocol as the failed round 2 and try stimming for longer.

This is the last round that insurance will cover, so I want to maximize my outcome. Do you have any suggestions on a protocol that may be beneficial for my circumstance?

Answer:

Respectfully, I do not think you were on optimal stimulation protocols. I suggest you call my assistant, Patti (702-533-2691)and set up an online consultation with me to discuss in detail.

 

Understanding the impact of ovarian reserve on the success of in vitro fertilization (IVF) is crucial when it comes to reproductive health. This article aims to simplify and clarify these concepts, emphasizing their significance in the selection of ovarian stimulation protocols for IVF. By providing you with this information, we hope to shed light on the importance of considering these factors and making informed decisions regarding fertility treatments.

  1. The Role of Eggs in Chromosomal Integrity: In the process of creating a healthy embryo, it is primarily the egg that determines the chromosomal integrity, which is crucial for the embryo’s competency. A competent egg possesses a normal karyotype, increasing the chances of developing into a healthy baby. It’s important to note that not all eggs are competent, and the incidence of irregular chromosome numbers (aneuploidy) increases with age.
  2. Meiosis and Fertilization: Following the initiation of the LH surge or the hCG trigger shot, the egg undergoes a process called meiosis, halving its chromosomes to 23. During this process, a structure called the polar body is expelled from the egg, while the remaining chromosomes are retained. The mature sperm, also undergoing meiosis, contributes 23 chromosomes. Fertilization occurs when these chromosomes combine, resulting in a euploid embryo with 46 chromosomes. Only euploid embryos are competent and capable of developing into healthy babies.
  3. The Significance of Embryo Ploidy: Embryo ploidy, referring to the numerical chromosomal integrity, is a critical factor in determining embryo competency. Aneuploid embryos, which have an irregular number of chromosomes, are often incompetent and unable to propagate healthy pregnancies. Failed nidation, miscarriages, and chromosomal birth defects can be linked to embryo ploidy issues. Both egg and sperm aneuploidy can contribute, but egg aneuploidy is usually the primary cause.
  4. Embryo Development and Competency: Embryos that develop too slowly or too quickly, have abnormal cell counts, contain debris or fragments, or fail to reach the blastocyst stage are often aneuploid and incompetent. Monitoring these developmental aspects can provide valuable insights into embryo competency.
  5. Diminished Ovarian Reserve (DOR): As women advance in their reproductive age, the number of remaining eggs in the ovaries decreases. Diminished ovarian reserve (DOR) occurs when the egg count falls below a certain threshold, making it more challenging to respond to fertility drugs effectively. This condition is often indicated by specific hormone levels, such as elevated FSH and decreased AMH. DOR can affect women over 40, but it can also occur in younger

 

Why IVF should be regarded as treatment of choice for women who have diminished ovarian reserve ( DOR):

Understanding the following factors will go a long way in helping you to make an informed decision and thereby improve the chances of a successful IVF outcome.

  1. Ovarian Reserve: While chronological age plays a vital role in determining the quality of eggs and embryos [there is an increased risk of egg aneuploidy (irregular chromosome number) in eggs,  leading to reduced embryo competency. Additionally, women with declining ovarian reserve (DOR), regardless of their age, are more likely to have aneuploid eggs/embryos. Therefore, it is crucial to address age-related factors and ovarian reserve to enhance IVF success.
  2. Excessive Luteinizing Hormone (LH) and Testosterone Effects: In women with DOR, their ovaries and developing eggs are susceptible to the adverse effects of excessive LH, which stimulates the overproduction of male hormones like testosterone. While some testosterone promotes healthy follicle growth and egg development, an excess of testosterone has a negative impact. Therefore, in both older women or those who (regardless of their age) have DOR, ovarian stimulation protocols that down-regulate LH activity before starting gonadotropins are necessary to improve egg/embryo quality and IVF outcomes.
  3. It is possible to regulate the  decline in egg/embryo competency by tailoring ovarian stimulation protocols. Here are my preferred protocols for women with relatively normal ovarian reserve:
  1. Conventional Long Pituitary Down Regulation Protocol:
  • Begin birth control pills (BCP) early in the cycle for at least 10 days.
  • Three days before stopping BCP, overlap with an agonist like Lupron for three days.
  • Continue daily Lupron until menstruation begins.
  • Conduct ultrasound and blood estradiol measurements to assess ovarian status.
  • Administer FSH-dominant gonadotropin along with Menopur for stimulation.
  • Monitor follicle development through ultrasound and blood estradiol measurements.
  • Trigger egg maturation using hCG injection, followed by egg retrieval.
  1. Agonist/Antagonist Conversion Protocol (A/ACP):
  • Similar to the conventional long down regulation protocol but replace the agonist with a GnRH antagonist from the onset of post-BCP menstruation until the trigger day.
  • Consider adding supplementary human growth hormone (HGH) for women with DOR.
  • Consider using “priming” with estrogen prior to gonadotropin administration
  1. Protocols to Avoid in Women with DOR: Certain ovarian stimulation protocols may not be suitable for women with declining ovarian reserve:
  • Microdose agonist “flare” protocols
  • High dosages of LH-containing fertility drugs such as Menopur
  • Testosterone-based supplementation
  • DHEA supplementation
  • Clomiphene citrate or Letrozole
  • Low-dosage hCG triggering or agonist triggering for women with DOR

 

 

Preimplantation Genetic Screening/Testing for aneuploidy (PGS/PGTA): PGS/PGTA is a valuable tool for identifying chromosomal abnormalities in eggs and embryos. By selecting the most competent (euploid) embryos, PGS/PGTA significantly improves the success of IVF, in women with DOR.

Understanding the impact of declining ovarian reserve on IVF outcomes is essential when making decisions about fertility treatments. Diminished ovarian reserve (DOR) can affect egg quality and increase the likelihood of aneuploid embryos with resultant IVF failure. By considering this factor, you can make informed choices and work closely with fertility specialists to optimize your chances of success. Remember, knowledge is power, and being aware of these aspects empowers you to take control of your reproductive journey.

PLEASE SHARE THIS WITH OTHERS AND HELP SPREAD THE WORD!!

 

Herewith are  online links to 2  E-books recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

  1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) ; http://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

 

  1. Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link ;https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

 

I invite you to visit my very recently launched “Podcast”,  “HAVE A BABY” on RUMBLE;   https://rumble.com/c/c-3304480

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com\

 

 

 

Name: Rosalyn G

Hello Dr. Sher,

I listen to your podcast with Dr. Aimee Eyvazzadeh and I wanted to engage with you before going into another FET w/egg donor my questions to you:

5 year IVF Journey/History:
* Zero pregnancy
* 2 Aneuploid PGTA embryos age 42,43
* 1 Failed FET with B/C graded egg donor
* Thin Uterus lining
* FET Transfer with a 6.5 lining ( changed Doctors)
* Mock Test 2022 – Uterus was receptive

NEW RE Doctor:
2023, Mock Uterus lining check 2 THICK AREAS 7.59, 7. ??
2024, LENA Procedure ( removed external polyp, uterus tissue -results benign)

QUESTIONS
1. What cost effective test, medications, procedures can I get to see if I have uterus lining has Natural KILLER CELLS activation ?
* I have positive RHA w/ Fibromyalgia, also have G6PD Deficiency w/anemia ( post military deployment)

2. Thin Uterus lining – What protocol would be best for me with mild Fibromyalgia, RA autoimmune, and G6PD deficiency

3. Do you have a clinic or know of a Egg Bank that has quality A egg donors?

4. My RE at Fertility Center of San Antonio, TX – will probably be opened to your advice.

Thank you, for supporting us

Answer:

Implantation dysfunction is often overlooked as a significant reason for IVF failure. This is especially true when IVF failure is unexplained, or when there are recurring pregnancy losses or underlying issues with the uterus, such as endo-uterine surface lesions, thin uterine lining (endometrium), or immunological factors.

IVF success rates have been improving in the past decade. Currently, in the United States, the average live birth rate per embryo transfer for women under 40 years old using their own eggs is about 2:5 per woman undergoing embryo transfer. However, there is a wide range of success rates among different IVF programs, varying from 20% to almost 50%. Based on these statistics, most women in the United States need to undergo two or more IVF-embryo transfer attempts to have a baby. Many IVF practitioners in the United States attribute the differences in success rates to variations in expertise among embryology laboratories, but this is not entirely accurate. Other factors, such as differences in patient selection, the failure to develop personalized protocols for ovarian stimulation, and the neglect of infectious, anatomical, and immunological factors that affect embryo implantation, are equally important.

Approximately 80% of IVF failures occur due to “embryo incompetency,” mainly caused by ( irregularities in chromosome number (aneuploidy), which is often related to the advancing age of the woman, diminished ovarian reserve ( DOR) but can also be influenced by the ovarian stimulation protocol chosen, and sperm dysfunction (male infertility). However, in around 20% of cases with dysfunction, failure is caused by problems with embryo implantation.

This section will focus on embryo implantation dysfunction and IVF failure which in the vast majority of cases is caused by:

  1. 1. Anatomical irregularities of the inner uterine surface:
  2. a) Surface lesions such as polyps/fibroids/ scar tissue
  3. b)endometrial thickness
  4.  
  5. 2. Immunologic Implantation Dysfunction ( IID)lesions
  6. a)Autoimmune IID
  7. b) Alloimmune IID

  1. ANATOMICAL IMPLANTATION DYSFUNCTION
  2. a) Surface lesions such as polyps/fibroids/ scar tissue

When there are problems with the structure of the uterus, it can lead to difficulties in getting pregnant. While uterine fibroids usually don’t cause infertility, they can affect fertility when they distort the uterine cavity or protrude through the lining. Even small fibroids located just beneath the lining and protruding into the cavity can decrease the chances of the embryo attaching. Multiple fibroids within the uterine wall that encroach upon the cavity can disrupt blood flow, impair estrogen delivery, and prevent proper thickening of the lining. These issues can be identified through ultrasound during the menstrual cycle’s proliferative phase. Any lesion on the uterine surface, such as submucous fibroids, adhesions, endometrial polyps, or placental polyps, can interfere with implantation by causing a local inflammatory response similar to the effect of an intrauterine contraceptive device (IUD).

Clearly, even small uterine lesions can have a negative impact on implantation. Considering the high costs and emotional toll associated with in vitro fertilization (IVF) and related procedures, it is reasonable to perform diagnostic tests like hysterosalpingography (HSG), fluid ultrasound examination (hysterosonogram), or hysteroscopy before starting IVF. Uterine lesions that can affect implantation often require surgical intervention. In most cases, procedures like dilatation and curettage (D&C) or hysteroscopic resection are sufficient. Rarely a laparotomy may be needed. Such interventions often lead to an improvement in the response of the uterine lining.

Hysterosonogram( HSN/saline ultrasound) is a procedure where a sterile saline solution is injected into the uterus through the cervix using a catheter. Vaginal ultrasound is then used to examine the fluid-filled cavity for any irregularities that might indicate surface lesions like polyps, fibroid tumors, scarring, or a septum. When performed by an expert, HSN is highly effective in detecting even the smallest lesions and can supplant hysteroscopy in certain cases. HSN is less expensive, less invasive/traumatic, and equally effective as hysteroscopy. The only drawback is that if a lesion is found, hysteroscopy may still be needed for treatment.

Hysteroscopy is a diagnostic procedure performed in an office setting with minimal discomfort to the patient. It involves inserting a thin, lighted instrument called a hysteroscope through the vagina and cervix into the uterus to examine the uterine cavity. Normal saline is used to distend the uterus during the procedure. Like HSN, hysteroscopy allows for direct visualization of the inside of the uterus to identify defects that could interfere with implantation. We have observed that around one in eight IVF candidates have lesions that need attention before undergoing IVF to optimize the chances of success. I strongly recommend that all patients undergo therapeutic surgery, usually hysteroscopy, to correct any identified issues before proceeding with IVF. Depending on the severity and nature of the problem, hysteroscopy may require general anesthesia and should be performed in a surgical facility equipped for laparotomy if necessary.

  1. b) Thickness of the uterine lining (endometrium)

As far back as In 1989, I and my team made an important discovery about using ultrasound to assess the thickness of the endometrium during the late proliferative phase of both “ natural” and hormone-stimulated cycles. The assessment helped predict the chances of conception. We found that an ideal thickness of over 9mm at the time of ovulation , egg retrieval or with the commencement of progesterone therapy in embryo recipient cycles ( e.g., IVF with egg donation, gestational, surrogacy and embryo adoption) was associated with optimal implantation rates, while an endometrial thickness of less than 8 mm was associated with failure to implant or early pregnancy loss in the vast majority of cases. An endometrium measuring <8mm was almost invariably associated with failure to implant or early pregnancy loss in the while an endometrium measuring 8 to 9 mm was regarded as being intermediate, and while pregnancies did occur in this range, the rates were only slightly lower than with an optimal lining of 9 mm

A “poor” uterine lining typically occurs when the innermost layer of the endometrium (basal or germinal endometrium) is unable to respond to estrogen by developing a thick enough outer “functional” layer to support successful embryo implantation and placental development. The “functional” layer, which accounts for two-thirds of the total endometrial thickness, is shed during menstruation if pregnancy does not occur.

The main causes of a poor uterine lining are:

  1. Damage to the basal endometrium due to:
    • Inflammation of the endometrium (endometritis), often resulting from retained products of conception after abortion, miscarriage, or childbirth.
    • Surgical trauma caused by aggressive dilatation and curettage (D&C).
  1. Insensitivity of the basal endometrium to estrogen due to:
    • Prolonged (back to back) use of clomiphene citrate for ovarian stimulation or…
    • Prenatal exposure to diethylstilbestrol (DES), a drug given to prevent miscarriage in the 1960s.
  1. Overexposure of the uterine lining to male hormones produced by the ovaries or administered during ovarian stimulation (primarily testosterone):
    • Older women, women with DOR (poor responders), and women with polycystic ovarian syndrome (PCOS) often have increased biological activity of luteinizing hormone (LH), leading to testosterone overproduction by the ovarian connective tissue (stroma/theca). This effect can be further amplified when certain ovarian stimulation protocols were high doses of menotropins ( e.g., Menopur) are used.
  1. Reduced blood flow to the basal endometrium caused by:
    • Multiple uterine fibroids, especially if they are located beneath the endometrium (submucosal).
    • Uterine adenomyosis, which involves extensive abnormal invasion of endometrial glands into the uterine muscle.

In 1996 I introduced the Vaginal administration of Sildenafil (Viagra) to improve endometrial thickening. The selective administration of Sildenafil has shown great promise in improving uterine blood flow and increasing endometrial thickening in cases of thin endometrial linings. When administered vaginally, it is quickly absorbed and reaches high concentrations in the uterine blood system, diluting as it enters the systemic circulation. This method has been found to have minimal systemic side effects. However, it is important to note that Viagra may not be effective in all cases, as some cases of thin uterine linings may involve permanent damage to the basal endometrium, rendering it unresponsive to estrogen.

Severe endometrial damage leading to poor responsiveness to estrogen can occur in various situations. These include post-pregnancy endometritis (inflammation after childbirth), chronic granulomatous inflammation caused by uterine tuberculosis (rare in the United States), and significant surgical injury to the basal endometrium (which can happen after aggressive D&C procedures).

 

  1. IMMUNOLOGIC IMPLANTATION DYSFUNCTION (IID)

There is a growing recognition that problems with the immune function in the uterus can lead to embryo implantation dysfunction. The failure of proper immunologic interaction during implantation has been implicated as a cause of recurrent miscarriage, late pregnancy fetal loss, IVF failure, and infertility. Some immunologic factors that may contribute to these issues include antiphospholipid antibodies (APA), antithyroid antibodies (ATA) , and activated natural killer cells (NKa).

  • Activated natural Killer Cells (NKa):

During ovulation and early pregnancy, the uterine lining is frequented by NK cells and T-cells, which together make up more than 80% of the immune cells in the uterine lining. These cells travel from the bone marrow to the endometrium where they proliferate under hormonal regulation. When exposed to progesterone, they produce TH-1 and TH-2 cytokines. TH-2 cytokines help the trophoblast (embryo’s “root system”) to penetrate the uterine lining, while TH-1 cytokines induce apoptosis (cell suicide), limiting placental development to the inner part of the uterus. The balance between TH1 and TH-2 cytokines is crucial for optimal placental development. NK cells and T-cells contribute to cytokine production. Excessive TH-1 cytokine production is harmful to the trophoblast and endometrial cells, leading to programmed cell death and ultimately to implantation failure. Functional NK cells reach their highest concentration in the endometrium around 6-7days after ovulation or exposure to progesterone, which coincides with the time of embryo implantation. It’s important to note that measuring the concentration of blood NK cells doesn’t reflect NK cell activation (NKa). The activation of NK cells is what matters. In certain conditions like endometriosis, the blood concentration of NK cells may be below normal, but NK cell activation is significantly increased.

There are several laboratory methods to assess NK cell activation (cytotoxicity), including immunohistochemical assessment of uterine NK cells and measuring TH-1 cytokines in the uterus or blood. However, the K-562 target cell blood test remains the gold standard. In this test, NK cells isolated from a woman’s blood are incubated with specific “target cells,” and the percentage of killed target cells is quantified. More than 12% killing indicates a level of NK cell activation that usually requires treatment. Currently, there are only a few Reproductive Immunology Reference Laboratories in the USA capable of reliably performing the K-562 target cell test.

There is a common misconception that adding IL (intralipid) or Intravenous gammaglobulin (IVIg) to NK cells can immediately downregulate NK cell activity. However, neither IL and IVIg cannot significantly suppress already activated NK cells. They are believed to work by regulating NK cell progenitors, which then produce downregulated NK cells. To assess the therapeutic effect, IL/IVIg infusion should be done about 14 days before embryos are transferred to the uterus to ensure a sufficient number of normal functional NK cells are present at the implantation site during embryo transfer. Failure to recognize this reality has led to the erroneous demand from IVF doctors for Reproductive Immunology Reference Laboratories to report on NK cell activity before and immediately after exposure to IVIg or IL at different concentrations. However, since already activated NK cells cannot be deactivated in the laboratory, assessing NKa suppression in this way has little clinical benefit. Even if blood is drawn 10-14 days after IL/IVIg treatment, it would take another 10-14 days to receive the results, which would be too late to be practically advantageous.

  • Antiphospholipid Antibodies:

Many women who struggle with IVF failure or recurrent pregnancy loss, as well as those with a personal or family history of autoimmune diseases like lupus erythematosus, rheumatoid arthritis, scleroderma, and dermatomyositis, often test positive for antiphospholipid antibodies (APAs). Over 30 years ago, I proposed a treatment for women with positive APA tests. This involved using a low dose of heparin to improve the success of IVF implantation and increase birth rates. Research indicated that heparin could prevent APAs from affecting the embryo’s “root system” ( the trophoblast), thus enhancing implantation. We later discovered that this therapy only benefits women whose APAs target specific phospholipids (phosphatidylethanolamine and phosphatidylserine). Nowadays, longer-acting low molecular weight heparinoids like Lovenox and Clexane have replaced heparin.

  • Antithyroid Antibodies ( thyroid peroxidase  -TPO and antithyroglobulin antibodies (TGa)

Between 2% and 5% of women of the childbearing age have reduced thyroid hormone activity (hypothyroidism). Women with hypothyroidism often manifest with reproductive failure i.e., infertility, unexplained (often repeated) IVF failure, or recurrent pregnancy loss (RPL). The condition is 5-10 times more common in women than in men. In most cases hypothyroidism is caused by damage to the thyroid gland resulting from thyroid autoimmunity (Hashimoto’s disease) caused by damage done to the thyroid gland by antithyroglobulin and antimicrosomal auto-antibodies. The increased prevalence of hypothyroidism and thyroid autoimmunity (TAI) in women is likely the result of a combination of genetic factors, estrogen-related effects, and chromosome X abnormalities. This having been said, there is significantly increased incidence of thyroid antibodies in non-pregnant women with a history of infertility and recurrent pregnancy loss and thyroid antibodies can be present asymptomatically in women without them manifesting with overt clinical or endocrinologic evidence of thyroid disease. In addition, these antibodies may persist in women who have suffered from hyper- or hypothyroidism even after normalization of their thyroid function by appropriate pharmacological treatment. The manifestations of reproductive dysfunction thus seem to be linked more to the presence of thyroid autoimmunity (TAI) than to clinical existence of hypothyroidism and treatment of the latter does not routinely result in a subsequent improvement in reproductive performance. It follows that if antithyroid autoantibodies are associated with reproductive dysfunction they may serve as useful markers for predicting poor outcome in patients undergoing assisted reproductive technologies. Some years back, I reported on the fact that 47% of women who harbor thyroid autoantibodies, regardless of the absence or presence of clinical hypothyroidism, have activated uterine natural killer cells (NKa) cells and cytotoxic lymphocytes (CTL) and that such women often present with reproductive dysfunction. We demonstrated that appropriate immunotherapy with IVIG or intralipid (IL) and steroids subsequently often results in a significant improvement in reproductive performance in such cases.

 

Almost 50% of women with antithyroid antibodies do not have activated cytotoxic T lymphocytes (CTL) or natural killer cells (NK cells). This suggests that the antibodies themselves may not be the direct cause of reproductive dysfunction. Instead, the activation of CTL and NK cells, which occurs in about half of the cases with thyroid autoimmunity (TAI), is likely an accompanying phenomenon that damages the early “root system” (trophoblast) of the embryo during implantation.

Treating women who have both antithyroid antibodies and activated NK cells/CTL with intralipid (IL) and steroids improves their chances of successful reproduction. However, women with antithyroid antibodies who do not have activated NK cells/CTL do not require this treatment.

  • Treatment Options for IID:
  1. Intralipid (IL) Therapy: IL is a mixture of soybean lipid droplets in water, primarily used for providing nutrition. When administered intravenously, IL supplies essential fatty acids that can activate certain receptors in NK cells, reducing their cytotoxic activity and enhancing implantation. IL, combined with corticosteroids, suppresses the overproduction of pro-inflammatory cytokines by NK cells, improving reproductive outcomes. IL is cost-effective and has fewer side effects compared to other treatments like IVIg.
  2. Intravenous immunoglobulin-G (IVIg) Therapy:In the past, IVIg was used to down-regulate activated NK cells. However, concerns about viral infections and the high cost led to a decline in its use. IVIg can be effective, but IL has become a more favorable and affordable alternative.
  3. Corticosteroid Therapy: Corticosteroids, such as prednisone and dexamethasone, are commonly used in IVF treatment. They have an immunomodulatory effect and reduce TH-1 cytokine production by CTL. When combined with IL or IVIg, corticosteroids enhance the implantation process. Treatment typically starts 10-14 days before embryo transfer and continues until the 10th week of pregnancy.
  4. Heparinoid Therapy: Low molecular weight heparin (Clexane, Lovenox)can improve IVF success rates in women with antiphospholipid antibodies (APAs) and may prevent pregnancy loss in certain thrombophilias when used during treatment. It is administered subcutaneously once daily from the start of ovarian stimulation.
  5. TH-1 Cytokine Blockers (Enbrel, Humira):TH-1 cytokine blockers have limited effectiveness in the IVF setting and, in my opinion, no compelling evidence supports their use. They may have a role in treating threatened miscarriage caused by CTL/NK cell activation, but not for IVF treatment. TH-1 cytokines are needed for cellular response, during the early phase of implantation, so completely blocking them could hinder normal implantation.
  6. Baby Aspirin and IVF:Baby aspirin doesn’t offer much value in treating implantation dysfunction (IID) and may even reduce the chance of success. This is because aspirin thins the blood and increases the risk of bleeding, which can complicate procedures like egg retrieval or embryo transfer during IVF, potentially compromising its success.
  7. Leukocyte Immunization Therapy (LIT):LIT involves injecting the male partner’s lymphocytes into the mother to improve the recognition of the embryo as “self” and prevent rejection. LIT can up-regulate Treg cells and down-regulate NK cell activation, improving the balance of TH-1 and TH-2 cells in the uterus. However, the same benefits can be achieved through IL (Intralipid) therapy combined with corticosteroids. IL is more cost-effective, and the use of LIT is prohibited by law in the USA.

Types of Immunologic Implantation Dysfunction (IID) and NK Cell Activation:

  1. Autoimmune Implantation Dysfunction: Women with a personal or family history of autoimmune conditions like Rheumatoid arthritis, Lupus Erythematosus, thyroid autoimmune disease (Hashimoto’s disease and thyrotoxicosis), and endometriosis (in about one-third of cases) may experience autoimmune IID. However, autoimmune IID can also occur without any personal or family history of autoimmune diseases. Treatment for NK cell activation in IVF cases complicated by autoimmune IID involves a combination of daily oral dexamethasone from the start of ovarian stimulation until the 10th week of pregnancy, along with 20% intralipid (IL) infusion 10 days to 2 weeks before embryo transfer. With this treatment, the chance of a viable pregnancy occurring within two completed embryo transfer  attempts is approximately 70% for women <40 years old who have  normal ovarian reserve.

  2. Alloimmune Implantation Dysfunction:NK cell activation occurs when the uterus is exposed to an embryo that shares certain genotypic (HLA/DQ alpha) similarities with the embryo recipient. Humans have 23 pairs of chromosomes: one set from the sperm and one set from the egg that created us. Our sixth pair of chromosomes each contain DQ alpha genes. Again, one of these genes is from the sperm and one is from the egg that created us.

Like the genes for eye color, DQ alpha/HLA gene combinations differ between people. Thus, the male (whose  sperm created an embryo is likely to have different DQ alpha/HLA gene combinations than the potential mother . However, there are rare situations in which the male and the female partners have  DQ-alpha/HLA gene combinations are the same.

 

The endometrial immune system is programmed to accept embryos with different DQ alpha/HLA gene combinations than its own. This is known as “alloimmune recognition.” So, if the man shares a similar DQ alpha/HLA gene combination with the woman, and his sperm creates an embryo that tries  to implant , her endometrial immune system will see the embryo’s DQ alpha/HLA gene as “too similar” to its own and assume it is a foreign body.

 

Usually, this will lead to NK/T cell activation, the overproduction of TH-1 cytokines, and reproductive failure (i.e., infertility, and pregnancy loss). The severity with which this occurs is an important determinant of whether total implantation failure will occur or whether there would remain enough residual trophoblastic activity that would allow the pregnancy to limp along until the nutritional supply can no longer meet the demands of the pregnancy, at which point pregnancy loss occurs.

 

In cases of paternal-maternal DQ alpha/HLA matching, it will often take several pregnancies for NK cell activation to build to the point that women with alloimmune implantation dysfunction will present with clinical evidence of implantation dysfunction. Sometimes it starts off with one or two live births, whereupon NK/T cell activity starts to build, leading to one or more early miscarriages. Eventually the NK/T cell activation is so high that subsequent pregnancies can be lost before the woman is even aware that she was pregnant at all. At this point, she is often diagnosed with secondary, “unexplained” infertility and/or “unexplained” IVF failure.

 

Alloimmune Implantation Dysfunction is diagnosed by testing the blood of both the male and female partners for matching DQ alpha genes and NK/T cell activation.

 

There are two types of DQ alpha/HLA genetic matching: 

  • Partial DQ alpha/HLA genetic matching: Couples who share only one DQ alpha/HLA gene are considered to have a “partial match.” If NK cell activation is also present, this partial match puts the couple at a disadvantage for IVF success. However, it’s important to note that DQ alpha/HLA matching, whether partial or total, does not cause IID without associated NK cell activation. Treatment for partial DQ alpha/HLA match with NK cell activation involves IL infusion and oral prednisone as adjunct therapy. IL infusion is repeated every 2-4 weeks after pregnancy is confirmed and continued until the 24th week of gestation. In these cases, only one embryo is transferred at a time to minimize the risk of NK cell activation.
  • Total (Complete) Alloimmune Genetic Matching:A total alloimmune match occurs when the husband’s DQ alpha genotype matches both that of the partner. Although rare, this total match along with NK cell activation significantly reduces the chance of a viable pregnancy resulting in a live birth at term. In some cases, the use of a gestational surrogate may be necessary.

It should be emphasized that poor embryo quality is not always the main cause of reproductive dysfunction and that the complex interaction between embryonic cells and the lining of the uterus  plays a critical role in successful implantation. Women with personal or family histories of autoimmune disease or endometriosis and those with unexplained (often repeated) IVF failure or recurrent pregnancy loss, often have immunologic implantation dysfunction (IID as the underlying cause . For such women, it is important to understand how IID leads to reproductive failure and how selective treatment options such as intralipid (IL), corticosteroid and heparinoid therapy, can dramatically  improve reproductive outcomes. Finally, there is real hope that proper identification and management of IID can  significantly improve the chance of successful reproduction and ultimately contribute to better quality of life after birth.

 ________________________________________________________________

PLEASE SHARE THIS WITH OTHERS AND HELP SPREAD THE WORD!!

 

Herewith are  online links to 2  E-books recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

  1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) ; http://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

 

  1. Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link ;https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

 

I invite you to visit my very recently launched “Podcast”,  “HAVE A BABY” on RUMBLE;   https://rumble.com/c/c-3304480

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com\

 

 

Name: Sandra A

Como puedo ser madre surrogada

Answer:

Please re-post in English!

 

Geoff Sher

Name: Xiomara R

Hi!!
I have a grade 422 low level mosaic.
Specifically, it says 46, XY, -Yp (x0, mos, ~40%), -14 (x1, mos, ~50%).
What are my real options to have a healthy/sick baby if I get it transferred?

Thank you so much,
Xiomara

Answer:
  • Human embryo development is a marvel of intricate processes, including reprogramming, sequential cleavage divisions, mitotic chromosome segregation, and embryonic genome activation. However, the journey towards a successful pregnancy is not without its challenges, as chromosomal abnormalities can occur during germ cell and preimplantation embryo development, leading to early implantation failures and pregnancy losses.

    Two decades ago, a groundbreaking technique emerged: full embryo karyotyping through preimplantation genetic sampling (PGS)/preimplantation genetic testing for aneuploidy (PGT-A). This method revolutionized the field by allowing us to identify and characterize an embryo’s karyotype, enabling the selective transfer of euploid embryos (those with a complete set of 46 chromosome! into the uterus. This innovation led to a remarkable increase in implantation and birth rates, coupled with a significant reduction in early pregnancy losses following in vitro fertilization (IVF). Today, PGS/PGT-A is a standard practice worldwide.

    However, this advancement presents a moral and ethical dilemma. Many IVF programs require patients to consent to the disposal of all aneuploid embryos—those with irregular chromosome quotas. Recent evidence has raised questions about whether some aneuploid embryos, when transferred, can “autocorrect” during development, potentially resulting in healthy babies. This dilemma forces us to reconsider our approach to discarding embryos.

    The crux of this embryo “autocorrection” lies in the fact that many embryos labeled as aneuploid through PGS/PGT-A also contain chromosomally normal (euploid) cells. This coexistence of aneuploid and euploid cells within the same embryo is known as “mosaicism.”

    In response to this complexity, more IVF practitioners are opting to cryobank certain PGS/PGT-A-identified aneuploid embryos, preserving the option for future transfer. To make informed decisions in such cases, it’s crucial to understand the two types of embryo aneuploidy:

    Meiotic aneuploidy: This results from chromosomal numerical abnormalities originating in the egg or sperm during preconceptual maturational division (meiosis). Meiotic aneuploidy is permanent, affecting all subsequent embryo cells and often leading to implantation failure, early pregnancy loss, or chromosomal birth defects.
    2.    Mitotic aneuploidy (Mosaicism): This occurs when some cells of a meiotically normal early embryo, in the process of cell replication (mitosis), mutate and become aneuploid after fertilization. The outcome depends on whether aneuploid or euploid cells predominate. Mosaic embryos with more euploid cells are likely to undergo autocorrection once arriving in the uterus, leading to the propagation of chromosomally normal and healthy pregnancies.

    Differentiating between these two types of aneuploidy is crucial, and next-generation gene sequencing (NGS) has significantly improved the accuracy of full embryo karyotyping, aiding in the diagnosis of mosaicism.

    Several factors influence the autocorrection potential of mosaic embryos, including the stage of embryo development at diagnosis, affected chromosomes, the complexity of aneuploidy, and the percentage of aneuploid cells. Embryos diagnosed as “mosaic” at earlier stages may autocorrect as they develop into blastocysts. Segmental mosaic aneuploidies and lower percentages of mitotically aneuploid cells in the blastocyst increase the chances of autocorrection.

    Transferring embryos with autosomal meiotic trisomy often results in implantation failure, miscarriage, or the birth of a defective child. In contrast, autosomal mitotic trisomies, which can autocorrect, require careful consideration. Patients are advised to undergo prenatal genetic testing and be prepared to make difficult decisions if necessary.

    When dealing with meiotic autosomal monosomy, the chances of a viable pregnancy are minimal, with those that do implant often ending in early spontaneous miscarriage. However, mosaic autosomal monosomic embryos can often autocorrect, making them a viable option for transfer. Nevertheless, full disclosure to patients and a commitment to prenatal genetic testing are essential in such cases.

    When we biopsy an embryo for PGS/PGT-A, we test only a few cells, typically around six. If at least one of these cells is healthy (euploid) while the others are not (aneuploid), it’s called a “mosaic” embryo, and is potentially capable of self-correcting in the womb and leading to a healthy baby. On the other hand, if all the tested cells are aneuploid, it’s highly likely that the rest of the untested cells in the embryo are also abnormal, making it an unsalvageable, meiotically aneuploid embryo. However, we can’t be certain because we haven’t tested all the cells. So, even if we diagnose an embryo as aneuploid, in a few cases, it might still be mosaic and have a chance to develop normally in the uterus.

    In summary, while we can confidently diagnose euploid embryos, diagnosing mosaic embryos is currently not perfect, and there’s a possibility that some may have the potential to develop into healthy babies. Embryo mosaicism adds complexity to the world of IVF, forcing us to navigate a delicate balance between minimizing risks and providing opportunities for patients to have healthy babies. The evolution of diagnostic techniques like NGS has brought us closer to understanding and harnessing the potential of mosaic embryos, but the journey remains intricate and ethically charged.

    PLEASE SHARE THIS WITH OTHERS AND HELP SPREAD THE WORD!!

     

    Herewith are  online links to 2  E-books recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

    1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) ; http://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

     

    1. Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link ;https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

     

    I invite you to visit my very recently launched “Podcast”,  “HAVE A BABY” on RUMBLE;   https://rumble.com/c/c-3304480

    If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com\

     

Name: brenda b

Quiero saber cuáles son los requirimientos ya que estoy muy interesada.

Answer:

Please re-post in English!

 

Geoff Sher

Name: Charlene Priscilla T

Dear Dr. Geoffrey,

I get a empty follicle. What I can change for my last stimulation? Low AMH. Age 40.

Kind regards,

Charlene

Answer:

Empty Follicle Syndrome” is a misleading term because follicles always contain eggs. However, some eggs may have difficulties detaching and being retrieved. This is more likely to happen when multiple attempts are needed to retrieve an egg from a follicle, indicating the egg may have chromosomal abnormalities.

The hormonal environment created during controlled ovarian stimulation plays a significant role in egg development. In certain cases, follicles may not release their eggs during retrieval, leading to the misconception of “empty” follicles.

This situation is most commonly encountered in older women, those with diminished ovarian reserve (DOR), and women with polycystic ovarian syndrome (PCOS). To address this problem, personalized protocols for controlled ovarian stimulation and careful administration of the hCG trigger shot are important.

The hCG trigger shot is given after optimal ovarian stimulation to initiate the process of reducing the number of chromosomes in the egg. It also helps the egg detach from the follicle’s inner wall. This allows for easier retrieval during the egg retrieval procedure.

Women with increased LH activity, such as older women, those with DOR, and women with PCOS, are more susceptible to the negative effects of LH-induced ovarian testosterone. Excessive LH activity can compromise egg development and increase the chances of chromosomal abnormalities. Medications like clomiphene and Letrozole can stimulate LH release, and certain drugs containing LH or hCG can have negative consequences.

Individualizing the controlled ovarian stimulation protocol, determining the correct dosage and type of hCG trigger, and administering it at the right time are crucial. The recommended dosage of urinary-derived hCG products is 10,000 units, while for recombinant DNA-derived hCG, the optimal dosage is 500 micrograms. A lower dosage of hCG can increase the risk of chromosomal abnormalities in the eggs and negatively impact the outcome of IVF.

Understanding the role of LH activity, the effects of medications on hormone release, and the importance of personalized protocols are vital. By optimizing these factors, the risk of failed egg retrieval and “empty follicle syndrome” can be minimized, improving the chances of successful IVF outcomes.

PLEASE SHARE THIS WITH OTHERS AND HELP SPREAD THE WORD!!

 

Herewith are  online links to 2  E-books recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

  1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) ; http://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

 

  1. Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link ;https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

 

I invite you to visit my very recently launched “Podcast”,  “HAVE A BABY” on RUMBLE;   https://rumble.com/c/c-3304480

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com\

 

Name: Iman D

Puedo volver a tomar clomid ahora que han pasado más de cuatro meses de descanso?

Answer:

Please re-post in English!

 

Geoff Sher

Name: Netzaly P

Cómo hago para ser donante de óvulos que requisitos debo cumplir para donar

Answer:

Please re-post in English!

Geoff Sher

Name: CLARE TRICIA A

Dear Dr,
my husband and I have a 5year old daughter. we have been trying to get pregnant for the last 4 years but no success so far. we visited a fertility Dr and were subjected to hormonal profile test, HSG, semen analysis, heterescopy and everything was fine.
we did 4 rounds of stimulated ovulation and many eggs released but no pregnancy came
we did 2 rounds of ivf, no success
what should we do?

Answer:
  • UNEXPLAINED” INFERTILITY: A RATIONAL APPROACH TO MANAGEMENT

Infertility affects y 10%-15% of couples who are unable to conceive. In some cases, the cause of infertility cannot be determined using conventional diagnostic methods, leading to a diagnosis of “unexplained infertility.” However, it is important to note that in most cases labeled as “unexplained infertility,” a more thorough evaluation could have revealed an underlying cause. There are two main groups of individuals diagnosed with unexplained infertility: those without any biological problems hindering pregnancy, and those with unidentified reasons due to limited medical information or technology. Fortunately, advancements in testing techniques have made it easier to diagnose and treat infertility in the latter group.

To make a presumptive diagnosis of unexplained infertility, healthcare providers need affirmative answers to several questions. These include whether the woman is ovulating normally, whether the couple engages in regular intercourse during the periovulatory phase of the menstrual cycle, whether the fallopian tubes are normal and open, whether endometriosis can be ruled out, whether the male partner has normal semen parameters (especially sperm count and motility), and whether the presence of high concentrations of antisperm antibodies in the man or woman’s blood is associated with sperm incapacitation.

The diagnosis of unexplained infertility depends on the thoroughness of the healthcare provider in attempting to rule out all potential causes. The fewer tests conducted, the more likely it is that  a presumptive diagnosis of “unexplained” infertility will be made. Below are a few causes of infertility that are often missed leading to the cause of infertility being mischaracterized as being “unexplained: :

  • Subtle abnormalities involving the fallopian tubes without causing them to be “blocked”, often go unnoticed. Examples include subtle peritubal adhesions and/ or developmental or acquired defects involving the tubal fimbria (i.e., the finger-like “petals” at their outer ends), can prevent the collection and transportation of eggs to meet sperm. Detecting these conditions requires direct visualization of lesions through laparoscopy or laparotomy
  • Chromosomal abnormalities in eggs or embryos can also contribute to infertility. Both eggs and embryos must contain the correct number of chromosomes (euploid) for successful fertilization and implantation. Until recently, there was no reliable method to determine their chromosomal status. However, the introduction of preimplantation genetic screening/testing (PGS/T), using genetic tests like next generation gene sequencing (NGS) has enabled the identification of embryo, numerical chromosomal abnormalities (aneuploidy) which when present will prejudice fertility. PGS/T has become an essential tool in diagnosing infertility.
  • Luteinized Unruptured Follicle (LUF) Syndrome is another condition that can contribute to unexplained infertility. In this condition, eggs become trapped in the follicle and are not released, despite routine tests indicating normal ovulation. Hormonal dysfunction related to ovulation can also negatively impact the preparation of the uterine lining, hindering normal implantation.
  • Immunologic implantation dysfunction (IID) can occur when the woman’s or man’s immune system attacks sperm cells, rendering them immobile or causing their destruction. Additionally, immunologic dysfunction involving the uterine lining can lead to early rejection of the implanting embryo, often before the woman realizes she has conceived.
  • Cervical infection, specifically Ureaplasma Urealyticum infection of the cervical glands, can prevent sperm from reaching the eggs in the fallopian tubes. This type of infection is usually undetectable through routine examination or cervical culturing methods.
  • Mild or moderate endometriosis is a condition associated with the production of “pelvic toxins” that reduce the fertilization potential of eggs. Approximately one-third of women with endometriosis also experience IID. Detecting mild or moderately severe endometriosis requires direct visualization of lesions through laparoscopy or laparotomy, and identifying IID requires sophisticated tests performed by specialized Reproductive Immunology Reference Laboratories. In some cases of early endometriosis the lesions are “nonpigmented” and  cannot even be detected through direct vision, yet they can significantly impact fertility through establishing a “toxic” intrapelvic environment that compromises competency of the egg as it traverses the pelvic environment during passage from the ovary to the tube.
  • Psychological factors can also influence fertility. Stress and negativity can interfere with hormonal balance and decrease the ability to conceive.
  • Mild Male Factor infertility that are not readily detected through routine semen analysis.
  • Antisperm antibodies (ASA) in the man or in the woman. This can only be diagnosed using high specialized blood and sperm test.

Management:

When it comes to managing “Unexplained Infertility,” a personalized approach is crucial for success. The first step is to identify any underlying causes whenever possible. For those experiencing ovulation dysfunction due to hormonal imbalances, ovulation induction with oral or injectable fertility drugs is often recommended. In cases where an IID is detected, selective immunotherapy will be required and in cases cervical mucus hostility is caused by a ureaplasma infection, specific and simultaneous antibiotic therapy becomes necessary.

For younger women (under 39 years) facing issues with sperm migration through the cervix, uterus, and fallopian tubes, intrauterine insemination (IUI) with or without controlled ovulation stimulation (COS) is often the recommended course of action. However, if these treatments prove ineffective, or if the woman is over 39 years old, has IID, harbors significant concentrations of antisperm antibodies, or has structural tubal abnormalities, IVF becomes the preferred option. In cases of male infertility that are intractable, moderate, or severe, where natural fertilization seems unlikely, injecting sperm directly into the egg through a procedure called intracytoplasmic sperm injection (ICSI)/IVF  is necessary to achieve fertilization.

It is an undeniable truth that the majority of infertility cases can be diagnosed, which makes it disheartening when the label of “unexplained infertility” is used as an excuse for not conducting a thorough evaluation of the problem. Couples should not simply accept a diagnosis of “unexplained infertility” at face value. Instead, they should actively seek to have their treating physician identify the specific cause of their infertility, as treatment is most likely to be successful when the root cause is fully understood. By taking charge of their reproductive health and exploring all possible avenues, couples can increase their chances of achieving their dream of starting a family.

 _____________________________________________________

PLEASE SHARE THIS WITH OTHERS AND HELP SPREAD THE WORD!!

 

Herewith are  online links to 2  E-books recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

  1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) ; http://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

 

  1. Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link ;https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

 

I invite you to visit my very recently launched “Podcast”,  “HAVE A BABY” on RUMBLE;   https://rumble.com/c/c-3304480

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com\

 

 

 

 

Name: Brenda N

hola, buen día. Quería saber cuantos años tengo que tener para donar óvulos y cómo sería todo el proceso, tengo que pagar algo?

Answer:

Please re-post in English!

 

Geoff Sher

Name: Ziyi W

Hi,

My wife and I are doing IVF in Canada and going to transfer embryos to United States for surrogacy. Can I know the cost estimation of FET at your clinic? (including fees to receive embryos from other clinics, FDA screening kits for international parents etc)

Thanks!

Answer:

Please call Jessie at SFS in New York (646-792-7476)  for this information.

Geoff Sher

 

 

 

Name: Holly S

Hello,

I compared the markers of different HLA genes between myself and my husband from our raw genetic data which was produced by 23andMe and I found the following:
1. HLA-A: 3/3 markers matched = 100%
2. HLA-B: 2/4 markers matched = 50%
3. HLA-C: 2/2 markers matched = 100%
4. HLA-G: 2/5 markers matched = 40%
5. HLA-DQA1: 7/17 markers matched = 41%
6. HLA-DQB1: 3/9 markers matched = 33%
7. HLA-DRB1: 3/5 markers matched = 60%
8. HLA-DRB5: 9/9 markers matched = 100%

Some APA testing done and was negative. No elevation in thyroid antibodies. Normal karyotype between me and my husband.

What treatments or methods of conception would be helpful for us given this information?

A bit of background:
We have a son from a medicated timed intercourse cycle after trying for 3.5 yrs after 4 failed medicated IUIs and one failed IVF cycle. I had an elevated PAPP-A during pregnancy and uterine artery blood flow was normal, however, son was small for gestational age (basically didn’t grow much after 35 weeks). Been trying for baby #2 since 2020. Since then I have done 5 medicated timed-intercourse cycles, 6 medicated IUIs, 7 blastocysts transferred (not PGT-A tested), all in all only resulting in 2 chemical pregnancies (1 from an IUI, 1 from an FET). Had chronic endometritis and undiagnosed endometriosis all during those blastocyst transfers. I also transferred 6 cleavage stage embryos where I used lovenox, intralipids, prednisone, and other meds but no pregnancy. Endometriosis diagnosed via laparoscopy in the Fall 2023 at age 41.

Thanks in advance for your advice.

Answer:

This is too complex for me to respond to authoritatively here. I request that you call my assistant, Patti Converse (702-533-2691) and set up an online consultation with me to discuss.

 

Geoff Sher

Name: Ola C

Dear Dr. Sher,

Im 37 years old with long story of 15 natural chemical pregnancies and after one ovarian stimulation with my oen eggs but with no blastocysts in October 2023 I decided to go through frozen donor eggs from a bank abroad. The same results even with the donor eggs, no blastocysts in the end. Husband’s kariotype is normal. 2 last times the ICSI have been performed in the same lab. Do you thing it might be the error in the lab or my husband sperm might be also the problem?

Thank you so much for your reply

Answer:

I think we should talk.

Please call my assistant, Patti Converse (702-533-2691) and set up an online consultation with me to discuss in depth.

  • UNDERSTANDING RECURRENT PREGNANCY LOSS ( RPL): CAUSES AND SOLUTIONS.

When it comes to reproduction, humans face challenges compared to other mammals. A significant number of fertilized eggs in humans do not result in live births, with up to 75% failing to develop, and around 30% of pregnancies ending within the first 10 weeks  (first trimester). Recurrent pregnancy loss (RPL) refers to two or more consecutive failed pregnancies, which is relatively rare, affecting less than 5% of women for two losses and only 1% for three or more losses. Understanding the causes of pregnancy loss and finding solutions is crucial for those affected. This article aims to explain the different types of pregnancy loss and shed light on potential causes.

Types of Pregnancy Loss: Pregnancy loss can occur at various stages, leading to different classifications:

  1. Early Pregnancy Loss: Also known as a miscarriage, this typically happens in the first trimester. Early pregnancy losses are usually sporadic, not recurring. In over 70% of cases, these losses are due to chromosomal abnormalities in the embryo, where there are more or fewer than the normal 46 chromosomes. Therefore, they are not likely to be repetitive.
  2. Late Pregnancy Loss: Late pregnancy losses occur after the first trimester (12th week) and are less common (1% of pregnancies). They often result from anatomical abnormalities in the uterus or cervix. Weakness in the cervix, known as cervical incompetence, is a frequent cause. Other factors include developmental abnormalities of the uterus, uterine fibroid tumors, intrauterine growth retardation, placental abruption, premature rupture of membranes, and premature labor.

Causes of Recurrent Pregnancy Loss (RPL): Recurrent pregnancy loss refers to multiple consecutive miscarriages. While chromosomal abnormalities are a leading cause of sporadic early pregnancy losses, RPL cases are mostly attributed to non-chromosomal factors. Some possible causes include:

  1. Uterine Environment Problems: Issues with the uterine environment can prevent a normal embryo from properly implanting and developing. These problems may include inadequate thickening of the uterine lining, irregularities in the uterine cavity (such as polyps, fibroid tumors, scarring, or adenomyosis), hormonal imbalances (progesterone deficiency or luteal phase defects), and deficient blood flow to the uterine lining.
  2. Immunologic Implantation Dysfunction (IID): IID is a significant cause of RPL, contributing to 75% of cases where chromosomally normal embryos fail to implant. It involves the immune system’s response to pregnancy, which can interfere with successful implantation.
  3. Blood Clotting Disorders: Thrombophilia, a hereditary clotting disorder, can disrupt the blood supply to the developing fetus, leading to pregnancy loss.
  4. Genetic and Structural Abnormalities: Genetic abnormalities are rare causes of RPL, while structural chromosomal abnormalities occur infrequently (1%). Unbalanced translocation, where part of one chromosome detaches and fuses with another, can lead to pregnancy loss. Studies also suggest that damaged sperm DNA can negatively impact fetal development and result in miscarriage.

 

IMMUNOLOGIC IMPLANTATION DYSFUNCTION AND RPL:

 

Autoimmune IID: Here an immunologic reaction is produced by the individual to his/her body’s own cellular components. The most common antibodies that form in such situations are APA and antithyroid antibodies (ATA). But it is only when specialized immune cells in the uterine lining, known as cytotoxic lymphocytes (CTL) and natural killer (NK) cells, become activated and start to release an excessive/disproportionate amount of TH-1 cytokines that attack the root system of the embryo, that implantation potential is jeopardized. Diagnosis of such activation requires highly specialized blood test for cytokine activity that can only be performed by a handful of reproductive immunology reference laboratories in the United States. Alloimmune IID, (i.e., where antibodies are formed against antigens derived from another member of the same species), is believed to be a common immunologic cause of recurrent pregnancy loss. Autoimmune IID is often genetically transmitted. Thus, it should not be surprising to learn that it is more likely to exist in women who have a family (or personal) history of primary autoimmune diseases such as lupus erythematosus (LE), scleroderma or autoimmune hypothyroidism (Hashimoto’s disease), autoimmune hyperthyroidism (Grave’s disease), rheumatoid arthritis, etc. Reactionary (secondary) autoimmunity can occur in conjunction with any medical condition associated with widespread tissue damage. One such gynecologic condition is endometriosis. Since autoimmune IID is usually associated with activated NK and T-cells from the outset, it usually results in such very early destruction of the embryo’s root system that the patient does not even recognize that she is pregnant. Accordingly, the condition usually presents as “unexplained infertility” or “unexplained IVF failure” rather than as a miscarriage. Alloimmune IID, on the other hand, usually starts off presenting as unexplained miscarriages (often manifesting as RPL). Over time as NK/T cell activation builds and eventually becomes permanently established the patient often goes from RPL to “infertility” due to failed implantation. RPL is more commonly the consequence of alloimmune rather than autoimmune implantation dysfunction. However, regardless, of whether miscarriage is due to autoimmune or alloimmune implantation dysfunction the final blow to the pregnancy is the result of activated natural killer cells (NKa) and cytotoxic lymphocytes (CTL B) in the uterine lining that damage the developing embryo’s “root system” (trophoblast) so that it can no longer sustain the growing conceptus. This having been said, it is important to note that autoimmune IID is readily amenable to reversal through timely, appropriately administered, selective immunotherapy, and alloimmune IID is not. It is much more difficult to treat successfully, even with the use of immunotherapy. In fact, in some cases the only solution will be to revert to selective immunotherapy plus using donor sperm (provided there is no “match” between the donor’s DQa profile and that of the female recipient) or alternatively to resort to gestational surrogacy.

 

DIAGNOSING THE CAUSE OF RPL.

In the past, women who miscarried were not evaluated thoroughly until they had lost several pregnancies in a row. This was because sporadic miscarriages are most commonly the result of embryo numerical chromosomal irregularities (aneuploidy) and thus not treatable. However, a consecutive series of miscarriages points to a repetitive cause that is non-chromosomal and is potentially remediable. Since RPL is most commonly due to a uterine pathology or immunologic causes that are potentially treatable, it follows that early chromosomal evaluation of products of conception could point to a potentially treatable situation. Thus, I strongly recommend that such testing be done in most cases of miscarriage. Doing so will avoid a great deal of unnecessary heartache for many patients. Establishing the correct diagnosis is the first step toward determining effective treatment for couples with RPL. It results from a problem within the pregnancy itself or within the uterine environment where the pregnancy implants and grows. Diagnostic tests useful in identifying individuals at greater risk for a problem within the pregnancy itself include Karyotyping (chromosome analysis) both prospective parents Assessment of the karyotype of products of conception derived from previous miscarriage specimens Ultrasound examination of the uterine cavity after sterile water is injected or sonohysterogram, fluid ultrasound, etc.) Hysterosalpingogram (dye X-ray test) Hysteroscopic evaluation of the uterine cavity Full hormonal evaluation (estrogen, progesterone, adrenal steroid hormones, thyroid hormones, FSH/LH, etc.) Immunologic testing to include Antiphospholipid antibody (APA) panel Antinuclear antibody (ANA) panel Antithyroid antibody panel (i.e., antithyroglobulin and antimicrosomal antibodies) Reproductive immunophenotype Natural killer cell activity (NKa) assay (i.e., K562 target cell test) Alloimmune testing of both the male and female partners

 

TREATMENT OF RPL

  • Treatment for Anatomic Abnormalities of the Uterus: 

This involves restoration through removal of local lesions such as fibroids, scar tissue, and endometrial polyps or timely insertion of a cervical cerclage (a stitch placed around the neck of the weakened cervix) or the excision of a uterine septum when indicated. Treatment of Thin Uterine Lining: A thin uterine lining has been shown to correlate with compromised pregnancy outcome. Often this will be associated with reduced blood flow to the endometrium. Such decreased blood flow to the uterus can be improved through treatment with sildenafil and possibly aspirin. sildenafil (Viagra) Therapy. Viagra has been used successfully to increase uterine blood flow. However, to be effective it must be administered starting as soon as the period stops up until the day of ovulation and it must be administered vaginally (not orally). Viagra in the form of vaginal suppositories given in the dosage of 25 mg four times a day has been shown to increase uterine blood flow as well as thickness of the uterine lining. To date, we have seen significant improvement of the thickness of the uterine lining in about 70% of women treated. Successful pregnancy resulted in 42% of women who responded to the Viagra. It should be remembered that most of these women had previously experienced repeated IVF failures. Use of Aspirin: This is an anti-prostaglandin that improves blood flow to the endometrium. It is administered at a dosage of 81 mg orally, daily from the beginning of the cycle until ovulation.

 

Treating Immunologic Implantation Dysfunction with Selective Immunotherapy: 

Modalities such as intralipid (IL), intravenous immunoglobulin-G (IVIG),  heparinoids (Lovenox/Clexane), and corticosteroids (dexamethasone, prednisone, prednisolone) can be used in select cases depending on autoimmune or alloimmune dysfunction. The Use of IVF in the Treatment of RPL In the following circumstances, IVF is the preferred option: When in addition to a history of RPL, another standard indication for IVF (e.g., tubal factor, endometriosis, and male factor infertility) is superimposed and in cases where selective immunotherapy is needed to treat an immunologic implantation dysfunction.  The reason for IVF being a preferred approach when immunotherapy is indicated is that in order to be effective, immunotherapy needs to be initiated well before spontaneous or induced ovulation. Given the fact that the anticipated birthrate per cycle of COS with or without IUI is at best about 15%, it follows that short of IVF, to have even a reasonable chance of a live birth, most women with immunologic causes of RPL would need to undergo immunotherapy repeatedly, over consecutive cycles. Conversely, with IVF, the chance of a successful outcome in a single cycle of treatment is several times greater and, because of the attenuated and concentrated time period required for treatment, IVF is far safer and thus represents a more practicable alternative Since embryo aneuploidy is a common cause of miscarriage, the use of preimplantation genetic screening/ testing (PGS/T), with tests such as next generation gene sequencing (NGS), can provide a valuable diagnostic and therapeutic advantage in cases of RPL. PGS/T requires IVF to provide access to embryos for testing. There are a few cases of intractable alloimmune dysfunction due to absolute DQ alpha gene matching ( where there is a complete genotyping match between the male and female partners) where Gestational Surrogacy or use of donor sperm could represent the only viable recourse, other than abandoning treatment altogether and/or resorting to adoption. Other non-immunologic factors such as an intractably thin uterine lining or severe uterine pathology might also warrant that last resort consideration be given to gestational surrogacy. Conclusion:

 

Understanding the causes of pregnancy loss is crucial for individuals experiencing recurrent miscarriages. While chromosomal abnormalities are a common cause of sporadic early pregnancy losses, other factors such as uterine environment problems, immunologic implantation dysfunction, blood clotting disorders, and genetic or structural abnormalities can contribute to recurrent losses. By identifying the underlying cause, healthcare professionals can provide appropriate interventions and support to improve the chances of a successful pregnancy. The good news is that if a couple with RPL is open to all of the diagnostic and treatment options referred to above, a live birthrate of 70%–80% is ultimately achievable.

____________________________________________________________________

PLEASE SHARE THIS WITH OTHERS AND HELP SPREAD THE WORD!!

 

Herewith are  online links to 2  E-books recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

  1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) ; http://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

 

  1. Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link ;https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

 

I invite you to visit my very recently launched “Podcast”,  “HAVE A BABY” on RUMBLE;   https://rumble.com/c/c-3304480

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com\

 

 

 

 

 

Name: Bronagh M

Hi Dr Sher, I am 40 years old and have suffered with a number of early pregnancy losses in the past year, all conceived naturally. I have a 3 year old son who was conceived easily with no issues during pregnancy or birth. I have read your info on IID and I’m hoping you can help me. I have had some bloodwork done in the UK and am borderline APA, with anticardiolipin results of 17.8 and 19.2. My plasma antithromb activity was 73. My clinic advised progesterone 3 days post LH surge, with aspirin and clexane after a positive pregnancy test. I did this with my last pregnancy but unfortunately a scan at what should have been 6 weeks gestation showed nothing in the uterus, but my lining was thick. I experienced a bleed soon after and have conceived again this next cycle and am now around 4 weeks 5 days.

I have only taken the progesterone and don’t plan to take aspirin as it was tough on my digestion and I have read your advice regarding aspirin for IID. I am unsure whether to begin the clexane as it didn’t help with my last pregnancy, would you recommend starting it now, or waiting until hcg levels have been tested to show the levels are rising as they should? I also have an ulstrasound scan planned for next week when I will be 5 weeks and 5 days, should I wait until after the scan to begin clexane? Getting past 5 weeks has been the biggest problem.

Is there any further tests I can do, either now during this pregnancy, or if it is not viable, should I have any other tests done before conceiving again? My clinic has suggested an endometrial receptivity test, with samples being sent to Chicago, would this be helpful?

I’m also curious on your thoughts about anti HY antibodies and RPL? As I have had a boy previously, could this be a factor?

Many thanks!

Answer:

When it comes to reproduction, humans face challenges compared to other mammals. A significant number of fertilized eggs in humans do not result in live births, with up to 75% failing to develop, and around 30% of pregnancies ending within the first 10 weeks  (first trimester). Recurrent pregnancy loss (RPL) refers to two or more consecutive failed pregnancies, which is relatively rare, affecting less than 5% of women for two losses and only 1% for three or more losses. Understanding the causes of pregnancy loss and finding solutions is crucial for those affected. This article aims to explain the different types of pregnancy loss and shed light on potential causes.

Types of Pregnancy Loss: Pregnancy loss can occur at various stages, leading to different classifications:

  1. Early Pregnancy Loss: Also known as a miscarriage, this typically happens in the first trimester. Early pregnancy losses are usually sporadic, not recurring. In over 70% of cases, these losses are due to chromosomal abnormalities in the embryo, where there are more or fewer than the normal 46 chromosomes. Therefore, they are not likely to be repetitive.
  2. Late Pregnancy Loss: Late pregnancy losses occur after the first trimester (12th week) and are less common (1% of pregnancies). They often result from anatomical abnormalities in the uterus or cervix. Weakness in the cervix, known as cervical incompetence, is a frequent cause. Other factors include developmental abnormalities of the uterus, uterine fibroid tumors, intrauterine growth retardation, placental abruption, premature rupture of membranes, and premature labor.

Causes of Recurrent Pregnancy Loss (RPL): Recurrent pregnancy loss refers to multiple consecutive miscarriages. While chromosomal abnormalities are a leading cause of sporadic early pregnancy losses, RPL cases are mostly attributed to non-chromosomal factors. Some possible causes include:

  1. Uterine Environment Problems: Issues with the uterine environment can prevent a normal embryo from properly implanting and developing. These problems may include inadequate thickening of the uterine lining, irregularities in the uterine cavity (such as polyps, fibroid tumors, scarring, or adenomyosis), hormonal imbalances (progesterone deficiency or luteal phase defects), and deficient blood flow to the uterine lining.
  2. Immunologic Implantation Dysfunction (IID): IID is a significant cause of RPL, contributing to 75% of cases where chromosomally normal embryos fail to implant. It involves the immune system’s response to pregnancy, which can interfere with successful implantation.
  3. Blood Clotting Disorders: Thrombophilia, a hereditary clotting disorder, can disrupt the blood supply to the developing fetus, leading to pregnancy loss.
  4. Genetic and Structural Abnormalities: Genetic abnormalities are rare causes of RPL, while structural chromosomal abnormalities occur infrequently (1%). Unbalanced translocation, where part of one chromosome detaches and fuses with another, can lead to pregnancy loss. Studies also suggest that damaged sperm DNA can negatively impact fetal development and result in miscarriage.

 

IMMUNOLOGIC IMPLANTATION DYSFUNCTION AND RPL:

 

Autoimmune IID: Here an immunologic reaction is produced by the individual to his/her body’s own cellular components. The most common antibodies that form in such situations are APA and antithyroid antibodies (ATA). But it is only when specialized immune cells in the uterine lining, known as cytotoxic lymphocytes (CTL) and natural killer (NK) cells, become activated and start to release an excessive/disproportionate amount of TH-1 cytokines that attack the root system of the embryo, that implantation potential is jeopardized. Diagnosis of such activation requires highly specialized blood test for cytokine activity that can only be performed by a handful of reproductive immunology reference laboratories in the United States. Alloimmune IID, (i.e., where antibodies are formed against antigens derived from another member of the same species), is believed to be a common immunologic cause of recurrent pregnancy loss. Autoimmune IID is often genetically transmitted. Thus, it should not be surprising to learn that it is more likely to exist in women who have a family (or personal) history of primary autoimmune diseases such as lupus erythematosus (LE), scleroderma or autoimmune hypothyroidism (Hashimoto’s disease), autoimmune hyperthyroidism (Grave’s disease), rheumatoid arthritis, etc. Reactionary (secondary) autoimmunity can occur in conjunction with any medical condition associated with widespread tissue damage. One such gynecologic condition is endometriosis. Since autoimmune IID is usually associated with activated NK and T-cells from the outset, it usually results in such very early destruction of the embryo’s root system that the patient does not even recognize that she is pregnant. Accordingly, the condition usually presents as “unexplained infertility” or “unexplained IVF failure” rather than as a miscarriage. Alloimmune IID, on the other hand, usually starts off presenting as unexplained miscarriages (often manifesting as RPL). Over time as NK/T cell activation builds and eventually becomes permanently established the patient often goes from RPL to “infertility” due to failed implantation. RPL is more commonly the consequence of alloimmune rather than autoimmune implantation dysfunction. However, regardless, of whether miscarriage is due to autoimmune or alloimmune implantation dysfunction the final blow to the pregnancy is the result of activated natural killer cells (NKa) and cytotoxic lymphocytes (CTL B) in the uterine lining that damage the developing embryo’s “root system” (trophoblast) so that it can no longer sustain the growing conceptus. This having been said, it is important to note that autoimmune IID is readily amenable to reversal through timely, appropriately administered, selective immunotherapy, and alloimmune IID is not. It is much more difficult to treat successfully, even with the use of immunotherapy. In fact, in some cases the only solution will be to revert to selective immunotherapy plus using donor sperm (provided there is no “match” between the donor’s DQa profile and that of the female recipient) or alternatively to resort to gestational surrogacy.

 

DIAGNOSING THE CAUSE OF RPL.

In the past, women who miscarried were not evaluated thoroughly until they had lost several pregnancies in a row. This was because sporadic miscarriages are most commonly the result of embryo numerical chromosomal irregularities (aneuploidy) and thus not treatable. However, a consecutive series of miscarriages points to a repetitive cause that is non-chromosomal and is potentially remediable. Since RPL is most commonly due to a uterine pathology or immunologic causes that are potentially treatable, it follows that early chromosomal evaluation of products of conception could point to a potentially treatable situation. Thus, I strongly recommend that such testing be done in most cases of miscarriage. Doing so will avoid a great deal of unnecessary heartache for many patients. Establishing the correct diagnosis is the first step toward determining effective treatment for couples with RPL. It results from a problem within the pregnancy itself or within the uterine environment where the pregnancy implants and grows. Diagnostic tests useful in identifying individuals at greater risk for a problem within the pregnancy itself include Karyotyping (chromosome analysis) both prospective parents Assessment of the karyotype of products of conception derived from previous miscarriage specimens Ultrasound examination of the uterine cavity after sterile water is injected or sonohysterogram, fluid ultrasound, etc.) Hysterosalpingogram (dye X-ray test) Hysteroscopic evaluation of the uterine cavity Full hormonal evaluation (estrogen, progesterone, adrenal steroid hormones, thyroid hormones, FSH/LH, etc.) Immunologic testing to include Antiphospholipid antibody (APA) panel Antinuclear antibody (ANA) panel Antithyroid antibody panel (i.e., antithyroglobulin and antimicrosomal antibodies) Reproductive immunophenotype Natural killer cell activity (NKa) assay (i.e., K562 target cell test) Alloimmune testing of both the male and female partners

 

TREATMENT OF RPL

  • Treatment for Anatomic Abnormalities of the Uterus: 

This involves restoration through removal of local lesions such as fibroids, scar tissue, and endometrial polyps or timely insertion of a cervical cerclage (a stitch placed around the neck of the weakened cervix) or the excision of a uterine septum when indicated. Treatment of Thin Uterine Lining: A thin uterine lining has been shown to correlate with compromised pregnancy outcome. Often this will be associated with reduced blood flow to the endometrium. Such decreased blood flow to the uterus can be improved through treatment with sildenafil and possibly aspirin. sildenafil (Viagra) Therapy. Viagra has been used successfully to increase uterine blood flow. However, to be effective it must be administered starting as soon as the period stops up until the day of ovulation and it must be administered vaginally (not orally). Viagra in the form of vaginal suppositories given in the dosage of 25 mg four times a day has been shown to increase uterine blood flow as well as thickness of the uterine lining. To date, we have seen significant improvement of the thickness of the uterine lining in about 70% of women treated. Successful pregnancy resulted in 42% of women who responded to the Viagra. It should be remembered that most of these women had previously experienced repeated IVF failures. Use of Aspirin: This is an anti-prostaglandin that improves blood flow to the endometrium. It is administered at a dosage of 81 mg orally, daily from the beginning of the cycle until ovulation.

 

Treating Immunologic Implantation Dysfunction with Selective Immunotherapy: 

Modalities such as intralipid (IL), intravenous immunoglobulin-G (IVIG),  heparinoids (Lovenox/Clexane), and corticosteroids (dexamethasone, prednisone, prednisolone) can be used in select cases depending on autoimmune or alloimmune dysfunction. The Use of IVF in the Treatment of RPL In the following circumstances, IVF is the preferred option: When in addition to a history of RPL, another standard indication for IVF (e.g., tubal factor, endometriosis, and male factor infertility) is superimposed and in cases where selective immunotherapy is needed to treat an immunologic implantation dysfunction.  The reason for IVF being a preferred approach when immunotherapy is indicated is that in order to be effective, immunotherapy needs to be initiated well before spontaneous or induced ovulation. Given the fact that the anticipated birthrate per cycle of COS with or without IUI is at best about 15%, it follows that short of IVF, to have even a reasonable chance of a live birth, most women with immunologic causes of RPL would need to undergo immunotherapy repeatedly, over consecutive cycles. Conversely, with IVF, the chance of a successful outcome in a single cycle of treatment is several times greater and, because of the attenuated and concentrated time period required for treatment, IVF is far safer and thus represents a more practicable alternative Since embryo aneuploidy is a common cause of miscarriage, the use of preimplantation genetic screening/ testing (PGS/T), with tests such as next generation gene sequencing (NGS), can provide a valuable diagnostic and therapeutic advantage in cases of RPL. PGS/T requires IVF to provide access to embryos for testing. There are a few cases of intractable alloimmune dysfunction due to absolute DQ alpha gene matching ( where there is a complete genotyping match between the male and female partners) where Gestational Surrogacy or use of donor sperm could represent the only viable recourse, other than abandoning treatment altogether and/or resorting to adoption. Other non-immunologic factors such as an intractably thin uterine lining or severe uterine pathology might also warrant that last resort consideration be given to gestational surrogacy. Conclusion:

 

Understanding the causes of pregnancy loss is crucial for individuals experiencing recurrent miscarriages. While chromosomal abnormalities are a common cause of sporadic early pregnancy losses, other factors such as uterine environment problems, immunologic implantation dysfunction, blood clotting disorders, and genetic or structural abnormalities can contribute to recurrent losses. By identifying the underlying cause, healthcare professionals can provide appropriate interventions and support to improve the chances of a successful pregnancy. The good news is that if a couple with RPL is open to all of the diagnostic and treatment options referred to above, a live birthrate of 70%–80% is ultimately achievable.

 

 

__________________________________________________________________________

PLEASE SHARE THIS WITH OTHERS AND HELP SPREAD THE WORD!!

 

Herewith are  online links to 2  E-books recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

  1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) ; http://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

 

  1. Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link ;https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

 

I invite you to visit my very recently launched “Podcast”,  “HAVE A BABY” on RUMBLE;   https://rumble.com/c/c-3304480

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com\

 

Name: Faith R

Hello Dr. Sher,

I am experiencing my 4th biochemical pregnancy in less than 2 years. I am 45 years old with 8 previous live births. My youngest son turned 2 years old in January. I recently acquired Day 3 labs and my AMH is .71 though I obviously have had no issues with spontaneous pregnancy. I have not evaluated my progesterone on Day 21 but I plan to do so the next cycle. Do you have recommendations or have you seen cases that are similar? I have regular 31 day cycles with normal luteal phases. I have normal BMI. I am not on any medications.

Thank you,

Faith

Answer:

I am attaching an article I wrote on RPL but I would like to preface this by saying that at 45y of age, and especially with concomitant DOR, the large majority of your eggs will be aneuploid and resulting embryos too. Such embryos, if they implant will be likely  lost in early pregnancy as miscarriages or chemical pregnancies. This could explain your losing so many pregnancies.

  • UNDERSTANDING RECURRENT PREGNANCY LOSS ( RPL): CAUSES AND SOLUTIONS.

When it comes to reproduction, humans face challenges compared to other mammals. A significant number of fertilized eggs in humans do not result in live births, with up to 75% failing to develop, and around 30% of pregnancies ending within the first 10 weeks  (first trimester). Recurrent pregnancy loss (RPL) refers to two or more consecutive failed pregnancies, which is relatively rare, affecting less than 5% of women for two losses and only 1% for three or more losses. Understanding the causes of pregnancy loss and finding solutions is crucial for those affected. This article aims to explain the different types of pregnancy loss and shed light on potential causes.

Types of Pregnancy Loss: Pregnancy loss can occur at various stages, leading to different classifications:

  1. Early Pregnancy Loss: Also known as a miscarriage, this typically happens in the first trimester. Early pregnancy losses are usually sporadic, not recurring. In over 70% of cases, these losses are due to chromosomal abnormalities in the embryo, where there are more or fewer than the normal 46 chromosomes. Therefore, they are not likely to be repetitive.
  2. Late Pregnancy Loss: Late pregnancy losses occur after the first trimester (12th week) and are less common (1% of pregnancies). They often result from anatomical abnormalities in the uterus or cervix. Weakness in the cervix, known as cervical incompetence, is a frequent cause. Other factors include developmental abnormalities of the uterus, uterine fibroid tumors, intrauterine growth retardation, placental abruption, premature rupture of membranes, and premature labor.

Causes of Recurrent Pregnancy Loss (RPL): Recurrent pregnancy loss refers to multiple consecutive miscarriages. While chromosomal abnormalities are a leading cause of sporadic early pregnancy losses, RPL cases are mostly attributed to non-chromosomal factors. Some possible causes include:

  1. Uterine Environment Problems: Issues with the uterine environment can prevent a normal embryo from properly implanting and developing. These problems may include inadequate thickening of the uterine lining, irregularities in the uterine cavity (such as polyps, fibroid tumors, scarring, or adenomyosis), hormonal imbalances (progesterone deficiency or luteal phase defects), and deficient blood flow to the uterine lining.
  2. Immunologic Implantation Dysfunction (IID): IID is a significant cause of RPL, contributing to 75% of cases where chromosomally normal embryos fail to implant. It involves the immune system’s response to pregnancy, which can interfere with successful implantation.
  3. Blood Clotting Disorders: Thrombophilia, a hereditary clotting disorder, can disrupt the blood supply to the developing fetus, leading to pregnancy loss.
  4. Genetic and Structural Abnormalities: Genetic abnormalities are rare causes of RPL, while structural chromosomal abnormalities occur infrequently (1%). Unbalanced translocation, where part of one chromosome detaches and fuses with another, can lead to pregnancy loss. Studies also suggest that damaged sperm DNA can negatively impact fetal development and result in miscarriage.

 

IMMUNOLOGIC IMPLANTATION DYSFUNCTION AND RPL:

 

Autoimmune IID: Here an immunologic reaction is produced by the individual to his/her body’s own cellular components. The most common antibodies that form in such situations are APA and antithyroid antibodies (ATA). But it is only when specialized immune cells in the uterine lining, known as cytotoxic lymphocytes (CTL) and natural killer (NK) cells, become activated and start to release an excessive/disproportionate amount of TH-1 cytokines that attack the root system of the embryo, that implantation potential is jeopardized. Diagnosis of such activation requires highly specialized blood test for cytokine activity that can only be performed by a handful of reproductive immunology reference laboratories in the United States. Alloimmune IID, (i.e., where antibodies are formed against antigens derived from another member of the same species), is believed to be a common immunologic cause of recurrent pregnancy loss. Autoimmune IID is often genetically transmitted. Thus, it should not be surprising to learn that it is more likely to exist in women who have a family (or personal) history of primary autoimmune diseases such as lupus erythematosus (LE), scleroderma or autoimmune hypothyroidism (Hashimoto’s disease), autoimmune hyperthyroidism (Grave’s disease), rheumatoid arthritis, etc. Reactionary (secondary) autoimmunity can occur in conjunction with any medical condition associated with widespread tissue damage. One such gynecologic condition is endometriosis. Since autoimmune IID is usually associated with activated NK and T-cells from the outset, it usually results in such very early destruction of the embryo’s root system that the patient does not even recognize that she is pregnant. Accordingly, the condition usually presents as “unexplained infertility” or “unexplained IVF failure” rather than as a miscarriage. Alloimmune IID, on the other hand, usually starts off presenting as unexplained miscarriages (often manifesting as RPL). Over time as NK/T cell activation builds and eventually becomes permanently established the patient often goes from RPL to “infertility” due to failed implantation. RPL is more commonly the consequence of alloimmune rather than autoimmune implantation dysfunction. However, regardless, of whether miscarriage is due to autoimmune or alloimmune implantation dysfunction the final blow to the pregnancy is the result of activated natural killer cells (NKa) and cytotoxic lymphocytes (CTL B) in the uterine lining that damage the developing embryo’s “root system” (trophoblast) so that it can no longer sustain the growing conceptus. This having been said, it is important to note that autoimmune IID is readily amenable to reversal through timely, appropriately administered, selective immunotherapy, and alloimmune IID is not. It is much more difficult to treat successfully, even with the use of immunotherapy. In fact, in some cases the only solution will be to revert to selective immunotherapy plus using donor sperm (provided there is no “match” between the donor’s DQa profile and that of the female recipient) or alternatively to resort to gestational surrogacy.

 

DIAGNOSING THE CAUSE OF RPL.

In the past, women who miscarried were not evaluated thoroughly until they had lost several pregnancies in a row. This was because sporadic miscarriages are most commonly the result of embryo numerical chromosomal irregularities (aneuploidy) and thus not treatable. However, a consecutive series of miscarriages points to a repetitive cause that is non-chromosomal and is potentially remediable. Since RPL is most commonly due to a uterine pathology or immunologic causes that are potentially treatable, it follows that early chromosomal evaluation of products of conception could point to a potentially treatable situation. Thus, I strongly recommend that such testing be done in most cases of miscarriage. Doing so will avoid a great deal of unnecessary heartache for many patients. Establishing the correct diagnosis is the first step toward determining effective treatment for couples with RPL. It results from a problem within the pregnancy itself or within the uterine environment where the pregnancy implants and grows. Diagnostic tests useful in identifying individuals at greater risk for a problem within the pregnancy itself include Karyotyping (chromosome analysis) both prospective parents Assessment of the karyotype of products of conception derived from previous miscarriage specimens Ultrasound examination of the uterine cavity after sterile water is injected or sonohysterogram, fluid ultrasound, etc.) Hysterosalpingogram (dye X-ray test) Hysteroscopic evaluation of the uterine cavity Full hormonal evaluation (estrogen, progesterone, adrenal steroid hormones, thyroid hormones, FSH/LH, etc.) Immunologic testing to include Antiphospholipid antibody (APA) panel Antinuclear antibody (ANA) panel Antithyroid antibody panel (i.e., antithyroglobulin and antimicrosomal antibodies) Reproductive immunophenotype Natural killer cell activity (NKa) assay (i.e., K562 target cell test) Alloimmune testing of both the male and female partners

 

TREATMENT OF RPL

  • Treatment for Anatomic Abnormalities of the Uterus: 

This involves restoration through removal of local lesions such as fibroids, scar tissue, and endometrial polyps or timely insertion of a cervical cerclage (a stitch placed around the neck of the weakened cervix) or the excision of a uterine septum when indicated. Treatment of Thin Uterine Lining: A thin uterine lining has been shown to correlate with compromised pregnancy outcome. Often this will be associated with reduced blood flow to the endometrium. Such decreased blood flow to the uterus can be improved through treatment with sildenafil and possibly aspirin. sildenafil (Viagra) Therapy. Viagra has been used successfully to increase uterine blood flow. However, to be effective it must be administered starting as soon as the period stops up until the day of ovulation and it must be administered vaginally (not orally). Viagra in the form of vaginal suppositories given in the dosage of 25 mg four times a day has been shown to increase uterine blood flow as well as thickness of the uterine lining. To date, we have seen significant improvement of the thickness of the uterine lining in about 70% of women treated. Successful pregnancy resulted in 42% of women who responded to the Viagra. It should be remembered that most of these women had previously experienced repeated IVF failures. Use of Aspirin: This is an anti-prostaglandin that improves blood flow to the endometrium. It is administered at a dosage of 81 mg orally, daily from the beginning of the cycle until ovulation.

 

Treating Immunologic Implantation Dysfunction with Selective Immunotherapy: 

Modalities such as intralipid (IL), intravenous immunoglobulin-G (IVIG),  heparinoids (Lovenox/Clexane), and corticosteroids (dexamethasone, prednisone, prednisolone) can be used in select cases depending on autoimmune or alloimmune dysfunction. The Use of IVF in the Treatment of RPL In the following circumstances, IVF is the preferred option: When in addition to a history of RPL, another standard indication for IVF (e.g., tubal factor, endometriosis, and male factor infertility) is superimposed and in cases where selective immunotherapy is needed to treat an immunologic implantation dysfunction.  The reason for IVF being a preferred approach when immunotherapy is indicated is that in order to be effective, immunotherapy needs to be initiated well before spontaneous or induced ovulation. Given the fact that the anticipated birthrate per cycle of COS with or without IUI is at best about 15%, it follows that short of IVF, to have even a reasonable chance of a live birth, most women with immunologic causes of RPL would need to undergo immunotherapy repeatedly, over consecutive cycles. Conversely, with IVF, the chance of a successful outcome in a single cycle of treatment is several times greater and, because of the attenuated and concentrated time period required for treatment, IVF is far safer and thus represents a more practicable alternative Since embryo aneuploidy is a common cause of miscarriage, the use of preimplantation genetic screening/ testing (PGS/T), with tests such as next generation gene sequencing (NGS), can provide a valuable diagnostic and therapeutic advantage in cases of RPL. PGS/T requires IVF to provide access to embryos for testing. There are a few cases of intractable alloimmune dysfunction due to absolute DQ alpha gene matching ( where there is a complete genotyping match between the male and female partners) where Gestational Surrogacy or use of donor sperm could represent the only viable recourse, other than abandoning treatment altogether and/or resorting to adoption. Other non-immunologic factors such as an intractably thin uterine lining or severe uterine pathology might also warrant that last resort consideration be given to gestational surrogacy. Conclusion:

 

Understanding the causes of pregnancy loss is crucial for individuals experiencing recurrent miscarriages. While chromosomal abnormalities are a common cause of sporadic early pregnancy losses, other factors such as uterine environment problems, immunologic implantation dysfunction, blood clotting disorders, and genetic or structural abnormalities can contribute to recurrent losses. By identifying the underlying cause, healthcare professionals can provide appropriate interventions and support to improve the chances of a successful pregnancy. The good news is that if a couple with RPL is open to all of the diagnostic and treatment options referred to above, a live birthrate of 70%–80% is ultimately achievable.

 ____________________________________________________________________

PLEASE SHARE THIS WITH OTHERS AND HELP SPREAD THE WORD!!

 

Herewith are  online links to 2  E-books recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

  1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) ; http://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

 

  1. Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link ;https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

 

I invite you to visit my very recently launched “Podcast”,  “HAVE A BABY” on RUMBLE;   https://rumble.com/c/c-3304480

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com\

 

 

Ivf

Name: Felichia M

How much is ivf treatment

Answer:

Please call Jessica at 646-792-7476