Ask Our Doctors

Supporting Your Journey

Our Medical Directors are outstanding physicians that you will find to be very personable and compassionate, who take care to ensure that you have the most cutting-edge fertility treatments at your disposal. This is your outlet to ask your questions to the doctors.

  • Dear Patients,

    I created this forum to welcome any questions you have on the topic of infertility, IVF, conception, testing, evaluation, or any related topics. I do my best to answer all questions in less than 24 hours. I know your question is important and, in many cases, I will answer within just a few hours. Thank you for taking the time to trust me with your concern.

    – Geoffrey Sher, MD

Fill in the following information and we’ll get back to you.

Name
Disclaimer

IVF cost

Name: Esnath C

Hello Doctor
I have listened to you on Egg Whisper and would like to come for IVF treatment from Tanzania. I am 48 years and would like to use my own eggs. My last eggs retrieval at 47 years we collected 11 eggs, I had twins but I gave birth at 27 weeks but they didn’t live more than 2 weeks 🥲🥲.

I would like to know IVF cost at your clinic.

Author

Answer:

Before making a final decision on how tom proceed, I suggest we talk. Let me tell you from the get go that doing IVF with own eggs at your age is not a wise option. Success rates are dismal….But let us have a dialogue about this.

Geoff Sher

____________________________________________________________________

  • ADDRESSING ADVANCING AGE AND DIMINISHING OVARIAN RESERVE (DOR) IN IVF

Understanding the impact of age and ovarian reserve on the success of in vitro fertilization (IVF) is crucial when it comes to reproductive health. This article aims to simplify and clarify these concepts, emphasizing their significance in the selection of ovarian stimulation protocols for IVF. By providing you with this information, we hope to shed light on the importance of considering these factors and making informed decisions regarding fertility treatments.

  1. The Role of Eggs in Chromosomal Integrity: In the process of creating a healthy embryo, it is primarily the egg that determines the chromosomal integrity, which is crucial for the embryo’s competency. A competent egg possesses a normal karyotype, increasing the chances of developing into a healthy baby. It’s important to note that not all eggs are competent, and the incidence of irregular chromosome numbers (aneuploidy) increases with age.
  2. Meiosis and Fertilization: Following the initiation of the LH surge or the hCG trigger shot, the egg undergoes a process called meiosis, halving its chromosomes to 23. During this process, a structure called the polar body is expelled from the egg, while the remaining chromosomes are retained. The mature sperm, also undergoing meiosis, contributes 23 chromosomes. Fertilization occurs when these chromosomes combine, resulting in a euploid embryo with 46 chromosomes. Only euploid embryos are competent and capable of developing into healthy babies.
  3. The Significance of Embryo Ploidy: Embryo ploidy, referring to the numerical chromosomal integrity, is a critical factor in determining embryo competency. Aneuploid embryos, which have an irregular number of chromosomes, are often incompetent and unable to propagate healthy pregnancies. Failed nidation, miscarriages, and chromosomal birth defects can be linked to embryo ploidy issues. Both egg and sperm aneuploidy can contribute, but egg aneuploidy is usually the primary cause.
  4. Embryo Development and Competency: Embryos that develop too slowly or too quickly, have abnormal cell counts, contain debris or fragments, or fail to reach the blastocyst stage are often aneuploid and incompetent. Monitoring these developmental aspects can provide valuable insights into embryo competency.
  5. Diminished Ovarian Reserve (DOR): As women advance in their reproductive age, the number of remaining eggs in the ovaries decreases. Diminished ovarian reserve (DOR) occurs when the egg count falls below a certain threshold, making it more challenging to respond to fertility drugs effectively. This condition is often indicated by specific hormone levels, such as elevated FSH and decreased AMH. DOR can affect women over 40, but it can also occur in younger

 

Why IVF should be regarded as treatment of choice for older women an those who have diminished ovarian reserve ( DOR):

Understanding the following factors will go a long way in helping you to make an informed decision and thereby improve the chances of a successful IVF outcome.

  1. Age and Ovarian Reserve: Chronological age plays a vital role in determining the quality of eggs and embryos. As women age, there is an increased risk of aneuploidy (abnormal chromosome numbers) in eggs and embryos, leading to reduced competency. Additionally, women with declining ovarian reserve (DOR), regardless of their age, are more likely to have aneuploid eggs/embryos. Therefore, it is crucial to address age-related factors and ovarian reserve to enhance IVF success.
  2. Excessive Luteinizing Hormone (LH) and Testosterone Effects: In women with DOR, their ovaries and developing eggs are susceptible to the adverse effects of excessive LH, which stimulates the overproduction of male hormones like testosterone. While some testosterone promotes healthy follicle growth and egg development, an excess of testosterone has a negative impact. Therefore, in older women or those with DOR, ovarian stimulation protocols that down-regulate LH activity before starting gonadotropins are necessary to improve egg/embryo quality and IVF outcomes.
  3. Individualized Ovarian Stimulation Protocols: Although age is a significant factor in aneuploidy, it is possible to prevent further decline in egg/embryo competency by tailoring ovarian stimulation protocols. Here are my preferred protocols for women with relatively normal ovarian reserve:
  1. Conventional Long Pituitary Down Regulation Protocol:
  • Begin birth control pills (BCP) early in the cycle for at least 10 days.
  • Three days before stopping BCP, overlap with an agonist like Lupron for three days.
  • Continue daily Lupron until menstruation begins.
  • Conduct ultrasound and blood estradiol measurements to assess ovarian status.
  • Administer FSH-dominant gonadotropin along with Menopur for stimulation.
  • Monitor follicle development through ultrasound and blood estradiol measurements.
  • Trigger egg maturation using hCG injection, followed by egg retrieval.
  1. Agonist/Antagonist Conversion Protocol (A/ACP):
  • Similar to the conventional long down regulation protocol but replace the agonist with a GnRH antagonist from the onset of post-BCP menstruation until the trigger day.
  • Consider adding supplementary human growth hormone (HGH) for women with DOR.
  • Consider using “priming” with estrogen prior to gonadotropin administration
  1. Protocols to Avoid for Older Women or Those with DOR: Certain ovarian stimulation protocols may not be suitable for older women or those with declining ovarian reserve:
  • Microdose agonist “flare” protocols
  • High dosages of LH-containing fertility drugs such as Menopur
  • Testosterone-based supplementation
  • DHEA supplementation
  • Clomiphene citrate or Letrozole
  • Low-dosage hCG triggering or agonist triggering for women with DOR

 

 

Preimplantation Genetic Screening/Testing(PGS/T): PGS/T is a valuable tool for identifying chromosomal abnormalities in eggs and embryos. By selecting the most competent (euploid) embryos, PGS/T significantly improves the success of IVF, especially in older women or those with DOR.

Understanding the impact of advancing age and declining ovarian reserve on IVF outcomes is essential when making decisions about fertility treatments. Age-related factors can affect egg quality and increase the likelihood of aneuploid embryos with resultant IVF failure. Diminished ovarian reserve (DOR) further complicates the process. By considering these factors, you can make informed choices and work closely with fertility specialists to optimize your chances of success. Remember, knowledge is power, and being aware of these aspects empowers you to take control of your reproductive journey.

______________________________________________________________

  • IVF WITH EGG DONATION: A REVIEW

Introduction:

Egg donation is when a woman donates her eggs for assisted reproduction or research purposes. In assisted reproduction, it usually involves using IVF technology, where the eggs are fertilized in a lab. Unfertilized eggs can also be frozen for future use. Egg donation is a form of assisted reproductive technology (ART) involving a third party.

For women who can’t get pregnant with their own eggs due to disease or low ovarian reserve, egg donation offers a realistic chance of becoming parents. It has clear benefits. First, young donors often provide more eggs than needed for a single IVF cycle, resulting in extra embryos that can be frozen for later use. Second, eggs from young donors are much less likely to have chromosomal abnormalities, reducing the risk of miscarriage and birth defects like Down’s syndrome.

Around 10%-15% of IVF procedures in the United States involve egg donation, mostly for older women with diminished ovarian reserve or for menopausal women. A much smaller percentage are performed on younger women who have premature ovarian failure or repeated IVF failures with low-quality eggs or embryos. Another rapidly emerging reason for egg donation is same-sex couples, mainly female, who want to share the experience of parenting, with one partner providing the eggs and the other receiving them. 

Most egg donation in the U.S. is done through licensed egg donor agencies or frozen egg banks, where anonymous donors are recruited. Sometimes recipients seek known donors through an agency, but this is less common and often done through private arrangements. Close family members are often approached as donors. Recipients may want to know or meet their egg donor to become familiar with their physical traits, intellect, and character, but anonymous donors are more common in the U.S. Recipients using anonymous donors are usually more open about the child’s conception when disclosing to family and friends. 

Donor agencies and Egg Banks provide detailed profiles and information about each donor for recipients to choose from. The recipient interacts with the egg donor program or Egg Bank in-person, over the phone, or online. After narrowing down choices, the recipient shares medical records with their IVF physician for consultation and examination. The process is facilitated by nurse coordinators who address all clinical, financial, and logistical aspects. Donor selection and matching are completed during this time. 

Egg donor agencies and egg banks typically prefer donors under 35 years old with normal ovarian reserve to minimize risks. Having a history of successful pregnancies or live births gives confidence in the donor’s reproductive potential. However, due to the shortage of donors, strict criteria like previous successful pregnancies cannot always be met. 

Sometimes donors may blame infertility on complications from the egg retrieval process, leading to legal actions. Evidence of trouble-free pregnancies provides comfort to the egg donor program when selecting a donor.

Screening Egg Donors

Genetic Screening: Many egg donor programs now use genetic screening panels to test for various genetic disorders. They follow the recommendations of the American Society of Reproductive Medicine (ASRM) and screen prospective donors for a host ( a panel) of conditions such as sickle cell trait or disease, thalassemia, cystic fibrosis, and Tay Sachs disease. About 90% of programs offer consultation with a geneticist.

Psychological/Emotional Screening: Recipient couples value compatibility with their chosen egg donor in terms of emotions, physicality, ethnicity, culture, and religion. Psychological screening is important in the United States. Since most donors are anonymous, it’s essential for the donor agency or IVF program to assess the donor’s commitment and motivation for providing this service. Some donors may not cope with the stress and stop their stimulation medication without informing anyone, causing the cycle to be canceled. 

Donor motivation and commitment need to be assessed carefully. Recipients in the U.S. often consider the “character” of the prospective egg donor as significant, believing that flaws in character may be genetically passed on. However, character flaws are usually influenced by environmental factors and unlikely to be genetically transmitted. 

Donors should undergo counseling, screening, and selective testing by a qualified psychologist. If needed, they should be referred to a psychiatrist for further evaluation. Tests like the MMPI, Meyers-Briggs, and NEO-Personality Indicator may be used to assess personality disorders. If significant abnormalities are found, the prospective donor should be automatically disqualified.

When choosing a known egg donor, it’s important to ensure that she is not coerced into participating. Recipients considering a close friend or family member as a donor should be aware that the donor may become a permanent and unwanted participant in their new family’s life.

Drug Screening: Due to the prevalence of substance abuse, we selectively perform urine and/or serum drug testing on our egg donors.

Screening for Sexually Transmitted Diseases (STDs): FDA and ASRM guidelines recommend testing all egg donors for STDs before starting IVF. While it’s highly unlikely for DNA and RNA viruses to be transmitted to an egg or embryo through sexual intercourse or IVF, women infected with viruses like hepatitis B, C, HTLV, HIV, etc., must be disqualified from participating in IVF with egg donation due to the remote possibility of transmission and potential legal consequences. 

Prior or existing infections with Chlamydia or Gonococcus suggest the possibility of pelvic adhesions or irreparably damaged fallopian tubes, which can cause infertility. If such infertility is later attributed to the egg retrieval process, it can lead to litigation. Even if an egg donor or recipient agrees to waive legal rights, there is still a potential risk of the offspring suing for wrongful birth later in life.

 

Screening Embryo Recipients

Medical Evaluation: Before starting infertility treatment, it’s important to assess a woman’s ability to safely carry a pregnancy and give birth to a healthy baby. This involves a thorough evaluation of cardiovascular, hepatorenal, metabolic, and reproductive health.

Infectious Screening: It is crucial to screen embryo recipients for infectious diseases. If the cervix is infected, introducing an embryo transfer catheter can transmit the infection to the sterile uterine cavity, leading to implantation failure or miscarriage in the early stages of pregnancy.

Immunologic Screening: Some autoimmune and alloimmune disorders can affect the success of implantation. To prevent treatment failure, it is advisable to evaluate the recipient for immunologic implantation dysfunction (IID) and in some cases, test both the recipient and sperm provider for alloimmune similarities that could affect implantation.

Disclosure and Consent: Full disclosure about the egg donation process, including medical and psychological risks, is necessary. Sufficient time should be dedicated to addressing questions and concerns from all parties involved. 

It’s important for all parties to seek independent legal advice to avoid conflicts of interest. Consent forms are reviewed and signed by the donor and recipient independently.

Types of Egg Donation

Conventional Egg Donation: This is the standard process for egg donor IVF. The menstrual cycles of the donor and recipient are synchronized using birth control pills. Both parties undergo fertility drug stimulation, allowing for precise timing of fresh embryo transfer. The success rate for pregnancy through this method is over 50% per cycle.

Donor Egg Bank: In this approach, eggs from young donors are frozen and stored for later use in IVF and embryo transfer. Frozen egg banks offer access to non-genetically tested eggs. While it provides convenience, there are minimal financial benefits. 

Through an electronic catalogue, recipients can select and purchase 1-5 frozen eggs. These eggs are fertilized through intracytoplasmic sperm injection (ICSI), and up to 2 embryos are selectively transferred, resulting in a 30-40% pregnancy rate without the risk of multiple pregnancies. This method reduces the cost, inconvenience, and risks associated with conventional fresh egg donor cycles. It is important for the recipient couple to be made aware that frozen eggs are slightly less likely to result in viable embryos as compared to fresh eggs and that the pregnancy rate using frozen eggs is also somewhat lower.

Preimplantation Genetic Screening/Testing for Aneuploidy (PGS/PGT):

The use of PGS/PGT to select embryos for transfer in IVF with egg donation is a topic of debate. Since most egg donors are under 35 years old, about 60-70% of embryos created from their eggs will likely have the correct number of chromosomes (euploid). This means that transferring up to two “untested” embryos from these donors should result in similar pregnancy rates compared to using PGS/PGT for embryo selection. However, it may in the future, become possible and practical to perform PGS/PGT on eggs for selective banking in the future. This could lead to improved success rates using banked eggs that have been tested for chromosomal abnormalities.

Egg Donation with Frozen Embryo Transfer (FET): Advances in embryo cryopreservation technology have made FET cycles a preferred method for many fertility specialists and patients. Whether or not embryos have undergone PGS/PGT testing, they are frozen as blastocysts and transferred in a subsequent FET cycle. This approach is more convenient, less complicated logistically, and can significantly improve the chances of successful pregnancy.

Financial Considerations in the United States:

The cost of an egg donor cycle involves various expenses. The average fee paid to the egg donor agency per cycle is typically between $2,000 – $8,000. Additional costs include psychological and clinical pre-testing, fertility drugs, and donor insurance, which range from $3,000 to $6,000. The medical services for the IVF treatment cycle can cost between $8,000 and $14,000. The donor stipend can vary widely, ranging from $5,000 to as high as $50,000, depending on the specific requirements of the recipient couple and supply-demand factors. Consequently, the total out-of-pocket expenses for an egg donor cycle in the United States ranges from $15,000 to $78,000, making it financially challenging for most couples in need of this service.

To address the growing gap between the need for affordable IVF with egg donation, various creative approaches have emerged. Here are a few examples:

 

  • Egg Banking: As mentioned earlier, egg banking is a method where eggs are preserved and stored for future use.
  • Egg Donor Sharing: This approach involves splitting the cost between two recipients, who then share the eggs for transfer or freezing. However, the downside is that there may be fewer eggs available for each recipient.
  • Egg Bartering: In this scenario, a woman undergoing IVF can exchange some of her eggs with the clinic in return for a reduction in her IVF fee. This arrangement can be problematic because if the woman donating her eggs fails to conceive while the recipient does, it may cause emotional distress and potential complications in the future.
  • Financial Risk Sharing: Some IVF programs offer a refund of fees if the egg donation is unsuccessful. This option is preferred by many recipient couples as it helps to spread the financial risk between the providers and the couple.

Moral, Legal, and Ethical Considerations:

In most States in the USA, the “Uniform Parentage Act” protects the recipient couple from legal disputes relating to parental claims by the donor. This “act” which states that the woman who gives birth to the child is legally recognized as the mother has generally prevented legal disputes over maternal custody in cases of IVF with egg donation. While a few states have less clear laws on this matter, there have been no major legal challenges so far.

The moral, ethical, and religious implications of egg donation vary and greatly influence the cultural acceptance of this process. In the United States, the prevailing attitude is that everyone is entitled to their own opinion and should have their views respected as long as they don’t infringe on the rights of others.

Looking ahead, there are important questions to consider. Should we cryopreserve and store eggs or ovarian tissue from a young woman who wishes to delay having children? Would it be acceptable for a woman to give birth to her own sister or aunt using these stored eggs? Should we store ovarian tissue across generations? Additionally, should egg donation primarily be used for stem cell research or as a source of spare body parts? If we decide to pursue these avenues, how do we ensure proper checks and balances? Are we willing to go down a slippery slope where the dignity of human embryos is disregarded, and the rights of human beings are compromised? Personally, I hope not.

___________________________________________________________

PLEASE SHARE THIS WITH OTHERS AND HELP SPREAD THE WORD!!

 

Herewith are  online links to 2  E-books recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

  1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) ; https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

 

  1. Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link ;https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

 

I invite you to visit my very recently launched “Podcast”,  “HAVE A BABY” on RUMBLE;   https://rumble.com/c/c-3304480

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com\

 

 

Frozen embryo transfer add on

Name: Sreevidhya V

Hello Dr. Sher,
Hope you are doing well..

1. What is your view about hcg booster shots between ovulation induction and transfer for modified natural transfer? Does it have positive effect on endometrium before transfer? If yes what will be the ideal protocol and dose for hcg booster?

2. What is your view about hcg wash (500iu of hcg injection into uterus one day before Frozen transfer). Does it improve implantation chances? Are there any risks to changing endometrial receptivity due to hcg wash?

3. Adding a single dose of mid luteal phase agonist 3 days post embryo transfer in frozen embryo transfer seems to improve implantation especially for older patients. Do you think this is a worthwhile addition without any detrimental effects?

Is it fine to take lupion sub cutaneous progesterone instead of intramuscular for luteal support?
Planning to use crionone 8% progesterone gel and synthetic progesterone tablet also for medicated natural cycle fet. Please let me know if it should be fine and there is nothing like too much progesterone..

Thanks in advance for sharing your expert opinion and guidance.

Author

Answer:

What is your view about hcg booster shots between ovulation induction and transfer for modified natural transfer? Does it have positive effect on endometrium before transfer? If yes what will be the ideal protocol and dose for hcg booster?

A: I do not advocate this!

2. What is your view about hcg wash (500iu of hcg injection into uterus one day before Frozen transfer). Does it improve implantation chances? Are there any risks to changing endometrial receptivity due to hcg wash?

A: It is a controversial approach which I do not believe helps!

3. Adding a single dose of mid luteal phase agonist 3 days post embryo transfer in frozen embryo transfer seems to improve implantation especially for older patients. Do you think this is a worthwhile addition without any detrimental effects?

A: Again, I do not believe there is a benefit.

 

GS

Feeling confused

Name: Philisiwe P

I happened to take a test and it was positive i started having pains and irregular spotting i consulted with the health providers and so far i recieved to opinion the first Dr suspected an ealry pregnancy as he could not see the baby in the first time scan he drew blood and they returned with an hcg 477 i don’t even understand i did ask the doctor who said their suspecting an ectopic pregnancy they drew another blood to be investigated
Now im left confused more than ever i dont know what happening or how risky is my babies life please help shed some light if my hcg increases what could that mean and what hcg level indicates a baby growing inside the uterus and what hcg level indicates an ectopic pregnancy?

Author

Answer:

There is no specific hCG level that differentiated between and IUP and an ectopic. However, the level should double every 2 days with normal intrauterine pregnancy …in the early stage of pregnancy. If it rises more slowly, that suggests a possible failing pregnancy or an ectopic. An US examination might also help around 7 weeks when a clear gestational sac should be visible in the uterus.

GS

 

 

 

Trompas ligadas

Name: Saona E

Quisiera saber si me puedo embarazar nuevamente con ligaduras de trompas y de q forma sería el proceso

Author

Answer:

Please re-post in English!

 

Geoff Sher

Loraine

Name: Loraine D

Quiero iniciar el proceso pero quisiera saber si mi seguro médico cubre el proceso

Author

Answer:

Please repost in English!

 

Geoff Sher

IVF treatment plan question with immunological problem

Name: Flora K

Dear Dr Sher,
I am a 35 years old woman and I have fallopian tube blockage. I have had 4 IVF cycles, 3 were unsuccessful, the second was successful (at the beginning hcg:5000, progesterone: 34), but unfortunately I had to abort it due to 22q microduplication (we were tested negative). Before the successful transfer I was sick and I got estrogen (it was after the stimulation round therefore my endometrium grew slower). I was vomiting, I had slight bleeding and I felt really bad during my pregnancy. Now I had a new stimulation round with PGT-A.
I had the following immunological tests: Th1/Th2 and NK. In the follicular phase I had extreme Th1 dominance and a little bit higher NK function. In the luteal phase (my cycle 28 days long but my luteal phase normally takes only 10 days) I had Th2 dominance and slightly higher number of NK cells.
In July I am going to have a new transfer. After LH peak I’ll get progesterone, steroid, maybe estrogen.
Do you think the medications may be sufficient for my immune problem? Is it possible that when I was pregnant due to the short luteal phase and the lower level of progesterone the immune system turned back to Th1 dominance and caused harm to the fetus?
I highly appreciate your reply.
All the bests,
Flora

Author

Answer:

It seems highly likely that you do have an immunologic implantation dysfunction. Your endometrial cytoikine and NK cell elevation are suggestive. However, the cause must firsdt be identified before treatment can be defined for FET. This will require a detailed assessment (see below).

  • A RATIONAL BASIS FOR MANAGEMENT OF IMMUNOLOGIC CAUSES OF EMBRYO IMPLANTATION DYSFUNCTION

In the world of assisted reproduction, when IVF fails repeatedly or without explanation, it’s often assumed that poor embryo quality is the main culprit. However, this view oversimplifies the situation. The process of embryo implantation, which begins about six or seven days after fertilization, involves a complex interaction between embryonic cells and the lining of the uterus. These specialized cells, called trophoblasts, eventually become the placenta. When the trophoblasts meet the uterine lining, they engage in a communication process with immune cells through hormone-like substances called cytokines. This interaction plays a critical role in supporting the successful growth of the embryo. From the earliest stages, the trophoblasts establish the foundation for the exchange of nutrients, hormones, and oxygen between the mother and the baby. The process of implantation not only ensures the survival of early pregnancy but also contributes to the quality of life after birth.

There are numerous uterine factors that can impede embryo implantation potential. However, the vast majority relate to the following three (3) factors:

  1. Thin uterine lining (endometrium) . A lining that is <8mm in thickness at the time of ovulation, and/ or the administration of progesterone
  2. Irregularity the inner surface of the uterine cavity (caused by protruding sub-mucous fibroids, scar  tissue or polyps )
  • Immunologic factors that compromise implantation

Of these 3 factors, the one most commonly overlooked (largely because of the highly complex nature of the problem) is immunologic implantation dysfunction (IID), a common cause of “unexplained (often repeated) IVF failure and recurrent pregnancy loss. This article will focus on the one that most commonly is overlooked ….namely, immunologic implantation dysfunction (IID.

There is a growing recognition that problems with the immune function in the uterus can lead to embryo implantation dysfunction. The failure of proper immunologic interaction during implantation has been implicated as a cause of recurrent miscarriage, late pregnancy fetal loss, IVF failure, and infertility. Some immunologic factors that may contribute to these issues include antiphospholipid antibodies (APA), antithyroid antibodies (ATA) , and activated natural killer cells (NKa).

  • Activated natural Killer Cells (NKa):

During ovulation and early pregnancy, the uterine lining is frequented by NK cells and T-cells, which together make up more than 80% of the immune cells in the uterine lining. These cells travel from the bone marrow to the endometrium where they proliferate under hormonal regulation. When exposed to progesterone, they produce TH-1 and TH-2 cytokines. TH-2 cytokines help the trophoblast (embryo’s “root system”) to penetrate the uterine lining, while TH-1 cytokines induce apoptosis (cell suicide), limiting placental development to the inner part of the uterus. The balance between TH1 and TH-2 cytokines is crucial for optimal placental development. NK cells and T-cells contribute to cytokine production. Excessive TH-1 cytokine production is harmful to the trophoblast and endometrial cells, leading to programmed cell death and ultimately to implantation failure.

Functional NK cells reach their highest concentration in the endometrium around 6-7 days after ovulation or exposure to progesterone, which coincides with the time of embryo implantation.

It’s important to note that measuring the concentration of blood NK cells doesn’t reflect NK cell activation (NKa). The activation of NK cells is what matters. In certain conditions like endometriosis, the blood concentration of NK cells may be below normal, but NK cell activation is significantly increased.

There are several laboratory methods to assess NK cell activation (cytotoxicity), including immunohistochemical assessment of uterine NK cells and measuring TH-1 cytokines in the uterus or blood. However, the K-562 target cell blood test remains the gold standard. In this test, NK cells isolated from a woman’s blood are incubated with specific “target cells,” and the percentage of killed target cells is quantified. More than 12% killing indicates a level of NK cell activation that usually requires treatment. Currently, there are only a few Reproductive Immunology Reference Laboratories in the USA capable of reliably performing the K-562 target cell test.

There is a common misconception that adding IL (intralipid) or IVIg to NK cells can immediately downregulate NK cell activity. However, IL and IVIg cannot significantly suppress already activated NK cells. They are believed to work by regulating NK cell progenitors, which then produce downregulated NK cells. To assess the therapeutic effect, IL/IVIg infusion should be done about 14 days before embryos are transferred to the uterus to ensure a sufficient number of normal functional NK cells are present at the implantation site during embryo transfer. Failure to recognize this reality has led to the erroneous demand from IVF doctors for Reproductive Immunology Reference Laboratories to report on NK cell activity before and immediately after exposure to IVIg or IL at different concentrations. However, since already activated NK cells cannot be deactivated in the laboratory, assessing NKa suppression in this way has little clinical benefit. Even if blood is drawn 10-14 days after IL/IVIg treatment, it would take another 10-14 days to receive the results, which would be too late to be practically advantageous.

  • Antiphospholipid Antibodies:

Many women who struggle with IVF failure or recurrent pregnancy loss, as well as those with a personal or family history of autoimmune diseases like lupus erythematosus, rheumatoid arthritis, scleroderma, and dermatomyositis, often test positive for antiphospholipid antibodies (APAs). Over 30 years ago, I proposed a treatment for women with positive APA tests. This involved using a low dose of heparin to improve the success of IVF implantation and increase birth rates. Research indicated that heparin could prevent APAs from affecting the embryo’s “root system” ( the trophoblast), thus enhancing implantation. We later discovered that this therapy only benefits women whose APAs target specific phospholipids (phosphatidylethanolamine and phosphatidylserine). Nowadays, longer-acting low molecular weight heparinoids like Lovenox and Clexane have replaced heparin.

  • Antithyroid Antibodies ( thyroid peroxidase -TPO and antithyroglobulin antibodies (TGa)

Between 2% and 5% of women of the childbearing age have reduced thyroid hormone activity (hypothyroidism). Women with hypothyroidism often manifest with reproductive failure i.e., infertility, unexplained (often repeated) IVF failure, or recurrent pregnancy loss (RPL). The condition is 5-10 times more common in women than in men. In most cases hypothyroidism is caused by damage to the thyroid gland resulting from thyroid autoimmunity (Hashimoto’s disease) caused by damage done to the thyroid gland by antithyroglobulin and antimicrosomal auto-antibodies. The increased prevalence of hypothyroidism and thyroid autoimmunity (TAI) in women is likely the result of a combination of genetic factors, estrogen-related effects, and chromosome X abnormalities. This having been said, there is significantly increased incidence of thyroid antibodies in non-pregnant women with a history of infertility and recurrent pregnancy loss and thyroid antibodies can be present asymptomatically in women without them manifesting with overt clinical or endocrinologic evidence of thyroid disease. In addition, these antibodies may persist in women who have suffered from hyper- or hypothyroidism even after normalization of their thyroid function by appropriate pharmacological treatment. The manifestations of reproductive dysfunction thus seem to be linked more to the presence of thyroid autoimmunity (TAI) than to clinical existence of hypothyroidism and treatment of the latter does not routinely result in a subsequent improvement in reproductive performance. It follows that if antithyroid autoantibodies are associated with reproductive dysfunction they may serve as useful markers for predicting poor outcome in patients undergoing assisted reproductive technologies. Some years back, I reported on the fact that 47% of women who harbor thyroid autoantibodies, regardless of the absence or presence of clinical hypothyroidism, have activated uterine natural killer cells (NKa) cells and cytotoxic lymphocytes (CTL) and that such women often present with reproductive dysfunction. We demonstrated that appropriate immunotherapy with IVIG or intralipid (IL) and steroids subsequently often results in a significant improvement in reproductive performance in such cases.


Almost 50% of women with antithyroid antibodies do not have activated cytotoxic T lymphocytes (CTL) or natural killer cells (NK cells). This suggests that the antibodies themselves may not be the direct cause of reproductive dysfunction. Instead, the activation of CTL and NK cells, which occurs in about half of the cases with thyroid autoimmunity (TAI), is likely an accompanying phenomenon that damages the early “root system” (trophoblast) of the embryo during implantation.

Treating women who have both antithyroid antibodies and activated NK cells/CTL with intralipid (IL) and steroids improves their chances of successful reproduction. However, women with antithyroid antibodies who do not have activated NK cells/CTL do not require this treatment.

  • Treatment Options for Immunologic Implantation Dysfunction (IID):
  1. Intralipid (IL) Therapy: IL is a mixture of soybean lipid droplets in water, primarily used for providing nutrition. When administered intravenously, IL supplies essential fatty acids that can activate certain receptors in NK cells, reducing their cytotoxic activity and enhancing implantation. IL, combined with corticosteroids, suppresses the overproduction of pro-inflammatory cytokines by NK cells, improving reproductive outcomes. IL is cost-effective and has fewer side effects compared to other treatments like IVIg.
  2. Intravenous immunoglobulin-G (IVIg) Therapy: In the past, IVIg was used to down-regulate activated NK cells. However, concerns about viral infections and the high cost led to a decline in its use. IVIg can be effective, but IL has become a more favorable and affordable alternative.
  3. Corticosteroid Therapy: Corticosteroids, such as prednisone and dexamethasone, are commonly used in IVF treatment. They have an immunomodulatory effect and reduce TH-1 cytokine production by CTL. When combined with IL or IVIg, corticosteroids enhance the implantation process. Treatment typically starts 10-14 days before embryo transfer and continues until the 10th week of pregnancy.
  4. Heparinoid Therapy: Low molecular weight heparin (Clexane, Lovenox) can improve IVF success rates in women with antiphospholipid antibodies (APAs) and may prevent pregnancy loss in certain thrombophilias when used during treatment. It is administered subcutaneously once daily from the start of ovarian stimulation.
  5. TH-1 Cytokine Blockers (Enbrel, Humira): TH-1 cytokine blockers have limited effectiveness in the IVF setting and, in my opinion, no compelling evidence supports their use. They may have a role in treating threatened miscarriage caused by CTL/NK cell activation, but not for IVF treatment. TH-1 cytokines are needed for cellular response, during the early phase of implantation, so completely blocking them could hinder normal implantation.
  1. Baby Aspirin and IVF: Baby aspirin doesn’t offer much value in treating implantation dysfunction (IID) and may even reduce the chance of success. This is because aspirin thins the blood and increases the risk of bleeding, which can complicate procedures like egg retrieval or embryo transfer during IVF, potentially compromising its success.
  2. Leukocyte Immunization Therapy (LIT): LIT involves injecting the male partner’s lymphocytes into the mother to improve the recognition of the embryo as “self” and prevent rejection. LIT can up-regulate Treg cells and down-regulate NK cell activation, improving the balance of TH-1 and TH-2 cells in the uterus. However, the same benefits can be achieved through IL (Intralipid) therapy combined with corticosteroids. IL is more cost-effective, and the use of LIT is prohibited by law in the USA.

Types of Immunologic Implantation Dysfunction (IID) and NK Cell Activation:

  1. Autoimmune Implantation Dysfunction: Women with a personal or family history of autoimmune conditions like Rheumatoid arthritis, Lupus Erythematosus, thyroid autoimmune disease (Hashimoto’s disease and thyrotoxicosis), and endometriosis (in about one-third of cases) may experience autoimmune IID. However, autoimmune IID can also occur without any personal or family history of autoimmune diseases.Treatment for NK cell activation in IVF cases complicated by autoimmune IID involves a combination of daily oral dexamethasone from the start of ovarian stimulation until the 10th week of pregnancy, along with 20% intralipid (IL) infusion 10 days to 2 weeks before embryo transfer. With this treatment, the chance of a viable pregnancy occurring within two completed embryo transfer attempts is approximately 70% for women <40 years old who have  normal ovarian reserve.
  2. Alloimmune Implantation Dysfunction: NK cell activation occurs when the uterus is exposed to an embryo that shares certain genotypic (HLA/DQ alpha) similarities with the embryo recipient.
    • Partial DQ alpha/HLA genetic matching: Couples who share only one DQ alpha/HLA gene are considered to have a “partial match.” If NK cell activation is also present, this partial match puts the couple at a disadvantage for IVF success. However, it’s important to note that DQ alpha/HLA matching, whether partial or total, does not cause IID without associated NK cell activation. Treatment for partial DQ alpha/HLA match with NK cell activation involves IL infusion and oral prednisone as adjunct therapy. IL infusion is repeated every 2-4 weeks after pregnancy is confirmed and continued until the 24th week of gestation. In these cases, only one embryo is transferred at a time to minimize the risk of NK cell activation.
    • Total (Complete) Alloimmune Genetic Matching: A total alloimmune match occurs when the husband’s DQ alpha genotype matches both that of the partner. Although rare, this total match along with NK cell activation significantly reduces the chance of a viable pregnancy resulting in a live birth at term. In some cases, the use of a gestational surrogate may be necessary.

It should be emphasized that poor embryo quality is not always the main cause of reproductive dysfunction and that the complex interaction between embryonic cells and the lining of the uterus  plays a critical role in successful implantation. Women with personal or family histories of autoimmune disease or endometriosis and those with unexplained (often repeated) IVF failure or recurrent pregnancy loss, often have immunologic implantation dysfunction (IID as the underlying cause . For such women, it is important to understand how IID leads to reproductive failure and how selective treatment options such as intralipid (IL), corticosteroid and heparinoid therapy, can dramatically  improve reproductive outcomes. Finally, there is real hope that proper identification and management of IID can  significantly improve the chance of successful reproduction and ultimately contribute to better quality of life after birth.

___________________________________________________________________

PLEASE SHARE THIS WITH OTHERS AND HELP SPREAD THE WORD!!

 

Herewith are  online links to 2  E-books recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

  1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) ; https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

 

  1. Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link ;https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

 

I invite you to visit my very recently launched “Podcast”,  “HAVE A BABY” on RUMBLE;   https://rumble.com/c/c-3304480

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com\

 

Scroll to Top