Ask Our Doctors

Supporting Your Journey

Our Medical Directors are outstanding physicians that you will find to be very personable and compassionate, who take care to ensure that you have the most cutting-edge fertility treatments at your disposal. This is your outlet to ask your questions to the doctors.

  • Dear Patients,

    I created this forum to welcome any questions you have on the topic of infertility, IVF, conception, testing, evaluation, or any related topics. I do my best to answer all questions in less than 24 hours. I know your question is important and, in many cases, I will answer within just a few hours. Thank you for taking the time to trust me with your concern.

    – Geoffrey Sher, MD

Fill in the following information and we’ll get back to you.

Name
Disclaimer

Hcg

Name: Timi G

Dear dr. Shed,
I have 2 questions about my pregnancy. I have concerns about my Hcg levels which are rising higher than normal in 48h. At 4+2 weeks HCG is 2856. Is it normal? Are there any exact HCG result or signs of molar/extopic pregnancy?
The other question is for that we have concert ticket for openair stadium venue, but i have had 2 miscarriages before. Could be any risk for the baby if we attend it?
Thank you for your help.

Author

Answer:

I don’t think attending a concert will prejudice your pregnancy!

Going through IVF is a major investment, emotionally, physically, and financially, for every patient or couple. One of the most crucial moments is receiving the result of the blood test for human chorionic gonadotropin (hCG) pregnancy. It’s a big deal! The days after the embryo transfer, waiting for this result, can be extremely stressful. That’s why it’s crucial for the IVF doctor and staff to handle this information with care and professionalism. They should be accessible to the patient/couple and provide results promptly and sensitively.

Testing urine or blood to check for human chorionic gonadotropin (hCG) is the best way to confirm pregnancy. Urine tests are cheaper and more commonly used. They are also more convenient because they can be done anywhere. However, blood tests are more reliable and sensitive than urine tests. They can detect pregnancy earlier and at lower hCG levels. Blood tests are also more accurate and can track changes in hCG levels over time. Urine tests can detect hCG when blood levels are above 20IU, which is about 16-18 days after ovulation or 2-3 days after a missed period. Blood tests can measure any concentration of hCG about 12-13 days after ovulation.

Detecting hCG in the blood early on and tracking its increase is especially useful for women undergoing fertility treatments like controlled ovarian stimulation or in vitro fertilization. The sooner hCG is detected and measured, the more information can be gathered about the success of implantation and the health of the developing embryo.

Typically, two beta hCG blood tests are done, spaced 2-4 days apart. It’s best to wait for the results of the second test before reporting on the pregnancy. This is because an initial result can change, even from equivocal or negative to positive. Sometimes a normal embryo takes longer to implant, and the hCG level can be initially low or undetectable. Regardless of the initial level, the test should be repeated after two days to check for a significant rise in hCG. A significant rise usually indicates that an embryo is implanting, which suggests a possible pregnancy. Waiting for the second test result helps avoid conveying false hope or disappointment.

It’s important to note that beta hCG levels don’t double every two days throughout pregnancy. Once the levels rise above 4,000U, they tend to increase more slowly. Except in specific cases like IVF using an egg donor or transfer of genetically tested embryos, the birth rate following IVF in younger women is around 40% per embryo transfer. Patients need to have realistic expectations and should be informed about how and when they will receive the news, as well as counseling in case of a negative outcome.

When an embryo starts to implant, it releases the pregnancy hormone hCG into the woman’s bloodstream. Around 12 days after egg retrieval, 9 days after a day 3 embryo transfer, or 7 days after a blastocyst transfer, a woman should have a quantitative beta hCG blood pregnancy test performed. By that time, most of the hCG injected to prepare the eggs for retrieval should have cleared from the bloodstream. So, if the test detects more than 10 IU of hCG per ml of blood, it indicates that the embryo has attempted to implant. In third-party IVF (e.g., ovum donation, gestational surrogacy, embryo adoption, or frozen embryo transfers), no hCG trigger is administered, so any amount of hCG detected in the blood is considered significant.

Sometimes, there is a slow initial rise in hCG between the first and second tests (failure to double every 48 hours). In such cases, a third and sometimes a fourth hCG test should be done at two-day intervals. A failure to double on the third and/or fourth test is a poor sign and could indicate a failed or dysfunctional implantation. In some cases, a progressively slow rising hCG level might indicate an ectopic pregnancy, which requires additional testing and follow-up.

In certain situations, the first beta hCG level starts high, drops with the second test, and then starts doubling again. This could suggest that initially, multiple embryos started to implant but only one survived to continue a healthy implantation.

It’s customary for the IVF clinic staff to inform the patient/couple and the referring physician about the hCG pregnancy test results. Often, the IVF physician or nurse-coordinator coordinates with the referring physician to arrange all necessary pregnancy tests. If the patient/couple prefer to make their own arrangements, the program should provide detailed instructions.

In some cases, when the two blood pregnancy tests show that one or more embryos are implanting, certain programs recommend daily injections of progesterone or the use of vaginal hormone suppositories for several weeks to support the implantation process. Others give hCG injections three times a week until the pregnancy can be confirmed by ultrasound examination. Some IVF programs don’t prescribe any hormones after the embryo transfer.

Patients with appropriate doubling of hCG levels within two days after frozen embryo transfer (FET) or third-party IVF procedures such as surrogacy or egg donation may receive estradiol and progesterone injections, often along with vaginal hormone suppositories, for 10 weeks after the implantation is diagnosed by blood pregnancy testing.

A positive Beta hCG blood pregnancy test indicates the possibility of conception, but ultrasound confirmation is needed to confirm the pregnancy. Until then, it is referred to as a “chemical pregnancy.” Only when ultrasound examination confirms the presence of a gestational sac, clinical examination establishes a viable pregnancy, or after abortion when products of conception are detected, is it called a clinical intrauterine pregnancy.

A significantly elevated  hCG blood level without concomitant detection of an gestational sac inside the uterus by ultrasound after 5 weeks gestation raises the suspicion of an ectopic (tubal) pregnancy.

The risk of miscarriage gradually decreases once a viable clinical pregnancy is diagnosed (a conceptus with a regular heartbeat of 110-180 beats per minute). From this point onward, the risk of miscarriage is usually 10- 15% for women under 40 years old and around 35% for women in their early forties.

Dealing with successful IVF cases is relatively easy as everyone feels happy and validated. The real challenge lies in handling unsuccessful cases. Setting rational expectations from the beginning is crucial. In some cases (fortunately rare), emotional pressure may overwhelm the patient/couple, leading to a need for counseling or psychiatric therapy. I always advise my patients that receiving optimal care doesn’t always guarantee the desired outcome. There are many variables beyond our control, especially the unpredictable nature of fate. With around 36 years of experience in this field, I strongly believe that when it comes to IVF, the saying “man proposes while God disposes” always holds.

There are a few important things to consider when interpreting blood hCG levels. Levels can vary widely, ranging from 5mIU/ml to over 400mIU/ml, 10 days after ovulation or egg retrieval. The levels double every 48-72 hours until the 6th week of pregnancy, after which the doubling rate slows down to about 96 hours. By the end of the 1st trimester, hCG levels reach 13,000-290,000 IU and then slowly decline to around 26,000-300,000 IU at full term. Here are the average hCG levels during the first trimester:

  • 3 weeks after the last menstrual period (LMP): 5-50 IU
  • 4 weeks LMP: 5-426 IU
  • 5 weeks LMP: 18-7,340 IU
  • 6 weeks LMP: 1,080-56,500 IU
  • 7-8 weeks LMP: 7,650-229,000 IU
  • 9-12 weeks LMP: 25,700-288,000 IU

Most doctors wait until around the 7th week to perform an ultrasound to confirm pregnancy. By that time, the heartbeat should be clearly visible, providing a more reliable assessment of the pregnancy’s viability.

In some cases, blood hCG levels can be unusually high or increase faster than normal. This could indicate multiple pregnancies or a molar pregnancy. Rarely, conditions unrelated to pregnancy, such as certain ovarian tumors or cancers, can cause detectable hCG levels in both blood and urine.

 

To summarize, testing urine or blood for hCG is the most reliable way to confirm pregnancy. Urine tests are more common and convenient, while blood tests are more accurate and can detect pregnancy earlier. Tracking hCG levels in the blood is especially important for women undergoing fertility treatments. It’s essential to wait for the results of a second blood test before confirming pregnancy to avoid false hope or disappointment. Interpreting hCG levels requires considering various factors, and doctors usually perform an ultrasound around the 7th week for a more accurate assessment. Unusually high hCG levels may indicate multiple pregnancies or other conditions unrelated to pregnancy. Providing sensitive and timely communication of results is crucial for IVF clinics to support patients through the emotional journey.

____________________________________________________________ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com

………………………………………………………………..

 

 

 

Empty follicles

Name: Feriba E

Hi dear doctorI hope you are well ,why my All my three follicles was empty I used controlled ovarian stimulation thanks a lot

Author

Answer:

Frequently, when following vigorous and often repeated flushing of follicles at egg retrieval they fail to yield eggs, it is ascribed to “Empty Follicle Syndrome.” This is a gross misnomer, because all follicles contain eggs. So why were no eggs retrieved from the follicles? Most likely it was because they would/could not yield the eggs they harbored.

This situation is most commonly seen in older women, women who have severely diminished ovarian reserve, and in women with polycystic ovarian syndrome (PCOS). In my opinion it is often preventable when an optimal, individualized and strategic protocol for controlled ovarian stimulation (COS) is employed and the correct timing and dosage is applied to the “hCG trigger shot.

Normally, following optimal ovarian stimulation, the hCG “trigger shot” is given for the purpose of it triggering meiosis (reproductive division) that is intended to halve the number of chromosomes from 46 to 23 within 32-36 hours. The hCG trigger also enables the egg to signal the “cumulus cells” that bind it firmly to the inner wall of the follicle (through enzymatic activity), to loosen or disperse, so that the egg can detach and readily be captured at egg retrieval (ER).

Ordinarily, normal eggs (and even those with only one or two chromosomal irregularities) will readily detach and be captured with the very first attempt to empty a follicle. Eggs that have several chromosomal numerical abnormalities (i.e., are “complex aneuploid”) are often unable to facilitate this process. This explains why when the egg is complex aneuploid, its follicle will not yield an egg…and why, when it requires repeated flushing of a follicle to harvest an egg, it is highly suggestive of it being aneuploid and thus “incompetent” (i.e., incapable of subsequently propagating a normal embryo).

Older women, women with diminished ovarian reserve, and those with polycystic ovarian syndrome, tend to have more biologically active LH in circulation. LH causes production of male hormone (androgens, predominantly testosterone), by ovarian connective tissue (stroma/theca). A little testosterone is needed for optimal follicle development and for FSH-induced ovogenesis (egg development). Too much LH activity compromises the latter, and eggs so affected are far more likely to be aneuploid following meiosis.

Women with the above conditions have increased LH activity and are thus more likely to produce excessive ovarian testosterone. It follows that sustained, premature elevations in LH or premature luteinization (often referred to as a “premature LH surge”) will prejudice egg development. Such compromised eggs are much more likely to end up being complex aneuploid following the administration of the hCG trigger, leading to fruitless attempts at retrieval and the so called “empty follicle syndrome.”

The developing eggs of women who have increased LH activity (older women, women with diminished ovarian reserve, and those with PCOS) are inordinately vulnerable to the effects of protracted exposure to LH-induced ovarian testosterone. Because of this, the administration of medications that provoke further pituitary LH release (e.g., clomiphene and Letrozole), drugs that contain LH or hCG (e.g., Menopur), or protocols of ovarian stimulation that provoke increased exposure to the woman’s own pituitary LH (e.g., “flare-agonist protocols”) and the use of “late pituitary blockade” (antagonist) protocols can be prejudicial.

The importance of individualizing COS protocol selection, precision with regard to the dosage and type of hCG trigger used, and the timing of its administration in such cases cannot be overstated. The ideal dosage of urinary-derived hCG (hCG-u) such as Novarel, Pregnyl and Profasi is 10,000U. When recombinant DNA-derived hCG (hCG-r) such as Ovidrel is used, the optimal dosage is 500mcg. A lower dosage of hCG can, by compromising meiosis, increase the risk of egg aneuploidy, and thus of IVF outcome.

There is in my opinion no such condition as “Empty Follicle Syndrome.” All follicles contain eggs. Failure to access those eggs at ER can often be a result of the protocol used for controlled ovarian stimulation.

 _______________________________________________________________________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com

………………………………………………………………..

 

PGT-A

Name: Vess V

Dear Dr. Sher,

I recently underwent IVF, resulting in 2 complex aneuploid embryos – one with Trisomy 11 and 21 and the other with Monosomoy 15, 18, 19 and 22. No mitoscore values were reported. Is it worth considering transfer of these embryos?

I am 46 years old and despite my advanced age, I am hopeful that I can have a child with my own eggs and would like to undergo another round of IVF, however, I am afraid that the optimal protocol may not be selected by the fertility specialist. I would be most grateful if I can please get your advice on potential IVF protocols that might be best suited to me…..would you advise a Mini-IVF protocol? What would be the best way forward?

Thank you kindly in advance.
Best,
Vess

Author

Answer:

_

Understanding the impact of age and ovarian reserve on the success of in vitro fertilization (IVF) is crucial when it comes to reproductive health. This article aims to simplify and clarify these concepts, emphasizing their significance in the selection of ovarian stimulation protocols for IVF. By providing you with this information, we hope to shed light on the importance of considering these factors and making informed decisions regarding fertility treatments.

  1. The Role of Eggs in Chromosomal Integrity: In the process of creating a healthy embryo, it is primarily the egg that determines the chromosomal integrity, which is crucial for the embryo’s competency. A competent egg possesses a normal karyotype, increasing the chances of developing into a healthy baby. It’s important to note that not all eggs are competent, and the incidence of irregular chromosome numbers (aneuploidy) increases with age.
  2. Meiosis and Fertilization: Following the initiation of the LH surge or the hCG trigger shot, the egg undergoes a process called meiosis, halving its chromosomes to 23. During this process, a structure called the polar body is expelled from the egg, while the remaining chromosomes are retained. The mature sperm, also undergoing meiosis, contributes 23 chromosomes. Fertilization occurs when these chromosomes combine, resulting in a euploid embryo with 46 chromosomes. Only euploid embryos are competent and capable of developing into healthy babies.
  3. The Significance of Embryo Ploidy: Embryo ploidy, referring to the numerical chromosomal integrity, is a critical factor in determining embryo competency. Aneuploid embryos, which have an irregular number of chromosomes, are often incompetent and unable to propagate healthy pregnancies. Failed nidation, miscarriages, and chromosomal birth defects can be linked to embryo ploidy issues. Both egg and sperm aneuploidy can contribute, but egg aneuploidy is usually the primary cause.
  4. Embryo Development and Competency: Embryos that develop too slowly or too quickly, have abnormal cell counts, contain debris or fragments, or fail to reach the blastocyst stage are often aneuploid and incompetent. Monitoring these developmental aspects can provide valuable insights into embryo competency.
  5. Diminished Ovarian Reserve (DOR): As women advance in their reproductive age, the number of remaining eggs in the ovaries decreases. Diminished ovarian reserve (DOR) occurs when the egg count falls below a certain threshold, making it more challenging to respond to fertility drugs effectively. This condition is often indicated by specific hormone levels, such as elevated FSH and decreased AMH. DOR can affect women over 40, but it can also occur in younger

 

Why IVF should be regarded as treatment of choice for older women an those who have diminished ovarian reserve ( DOR):

Understanding the following factors will go a long way in helping you to make an informed decision and thereby improve the chances of a successful IVF outcome.

  1. Age and Ovarian Reserve: Chronological age plays a vital role in determining the quality of eggs and embryos. As women age, there is an increased risk of aneuploidy (abnormal chromosome numbers) in eggs and embryos, leading to reduced competency. Additionally, women with declining ovarian reserve (DOR), regardless of their age, are more likely to have aneuploid eggs/embryos. Therefore, it is crucial to address age-related factors and ovarian reserve to enhance IVF success.
  2. Excessive Luteinizing Hormone (LH) and Testosterone Effects: In women with DOR, their ovaries and developing eggs are susceptible to the adverse effects of excessive LH, which stimulates the overproduction of male hormones like testosterone. While some testosterone promotes healthy follicle growth and egg development, an excess of testosterone has a negative impact. Therefore, in older women or those with DOR, ovarian stimulation protocols that down-regulate LH activity before starting gonadotropins are necessary to improve egg/embryo quality and IVF outcomes.
  3. Individualized Ovarian Stimulation Protocols: Although age is a significant factor in aneuploidy, it is possible to prevent further decline in egg/embryo competency by tailoring ovarian stimulation protocols. Here are my preferred protocols for women with relatively normal ovarian reserve:
  1. Conventional Long Pituitary Down Regulation Protocol:
  • Begin birth control pills (BCP) early in the cycle for at least 10 days.
  • Three days before stopping BCP, overlap with an agonist like Lupron for three days.
  • Continue daily Lupron until menstruation begins.
  • Conduct ultrasound and blood estradiol measurements to assess ovarian status.
  • Administer FSH-dominant gonadotropin along with Menopur for stimulation.
  • Monitor follicle development through ultrasound and blood estradiol measurements.
  • Trigger egg maturation using hCG injection, followed by egg retrieval.
  1. Agonist/Antagonist Conversion Protocol (A/ACP):
  • Similar to the conventional long down regulation protocol but replace the agonist with a GnRH antagonist from the onset of post-BCP menstruation until the trigger day.
  • Consider adding supplementary human growth hormone (HGH) for women with DOR.
  • Consider using “priming” with estrogen prior to gonadotropin administration
  1. Protocols to Avoid for Older Women or Those with DOR: Certain ovarian stimulation protocols may not be suitable for older women or those with declining ovarian reserve:
  • Microdose agonist “flare” protocols
  • High dosages of LH-containing fertility drugs such as Menopur
  • Testosterone-based supplementation
  • DHEA supplementation
  • Clomiphene citrate or Letrozole
  • Low-dosage hCG triggering or agonist triggering for women with DOR

 

 

Preimplantation Genetic Screening/Testing(PGS/T): PGS/T is a valuable tool for identifying chromosomal abnormalities in eggs and embryos. By selecting the most competent (euploid) embryos, PGS/T significantly improves the success of IVF, especially in older women or those with DOR.

Understanding the impact of advancing age and declining ovarian reserve on IVF outcomes is essential when making decisions about fertility treatments. Age-related factors can affect egg quality and increase the likelihood of aneuploid embryos with resultant IVF failure. Diminished ovarian reserve (DOR) further complicates the process. By considering these factors, you can make informed choices and work closely with fertility specialists to optimize your chances of success. Remember, knowledge is power, and being aware of these aspects empowers you to take control of your reproductive journey.

 ________________________________________________________

___________________________________________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com

………………………………………………………………..

When Should I Stop Lovenox?

Name: Lena M

Hi Dr. Sher,

I am 41 years old and I am currently 8 weeks and 5 days pregnant through IVF and I need a second opinion when to stop Lovenox. Just to provide some background, I had two failed embryo transfers with AA euploid blastocysts. Then I was diagnosed with endometriosis and had excision surgery in March 2023. Also, I have these gene mutations:
PAI-1 (675 5G>4G) Homozygous
MTR (2756 A>G) Heterozygous
MTHFR (1298 A>C) Heterozygous
MTRR (66 A>G) Homozygous

I had test for homocysteine on 06/2023 – 5.8 umol/L
Test for PLASMINOGEN ACTIVATOR INHIBITOR 1 in 2021 – 5ng/ml
I am taking methylfolate form of folic acid.

Currently as part of IVF protocol besides progesterone/estrogen I am taking these medications since I had slightly elevated Th1/Th2 ratio and to reduce inflammation:
Prednisone 20mg/day
Tacrolimus 1mg/day
Lovenox 40
Aspirin 81

The doctor recommends stopping lovenox and tacrolimus at the end of week 9 and starting weaning down prednisone. I noticed that most people stop lovenox at the end of week 12 and want to ask what you would be recommendation. Also want to ask if there any pregnancy risks associated with gene mutations I have and do I need to do any specific bloodwork related to them?

Thank you,
Lena

Author

Answer:

I would continue all the way through pregnancy and the 1st 6 weeks thereafter.

Thrombophilia (Hereditary Clotting Defect) is defined as the genetic predisposition to developing intravascular thrombosis. It is due to hypercoagulability of blood leading to impairment of initial vascularization that takes place during implantation.

Thrombophilia affects as many as one in five people in the United States and is responsible for pregnancy loss (most particularly after the 1st trimester) and “unexplained” infertility, as well as being a factor in some cases of “unexplained” IVF failure. Whether (and/or the extent to which) thrombophilia causes 1st trimester recurrent pregnancy loss (RPL) is the subject of debate and is controversial. In fact, first-trimester RPL is far more likely to be due to immunologic implantation dysfunction (IID) and/or irregularities in the contour of the uterine cavity or insufficient thickness of its lining (a thin endometrium). Thrombophilia has also been associated with late pregnancy-induced complications such as preeclampsia, premature separation of the placenta (abruptio placenta), placental insufficiency with intrauterine growth retardation, and in “unexplained” intrauterine death.

This having been said, it is a fact that most women with a thrombophilia go on to experience healthy pregnancies.

Diagnosis of Throbophilia

Thrombophilia is diagnosed when one or more of the following is detected:

  • Mutational defect involving methylenetetrahydrofolate reductase (MTHFR), which occurs in at least 20% of affected cases. Homozygosity for a common C677T mutation in the MTHFR gene that is associated with hyperhomocysteinemia is the most common form of hereditary thrombophilia leading to a 3-fold increase in risk of complications.
  • Mutation of factor V Leiden (FVL),
  • A mutation of prothrombin G20210A,
  • Deficiency of antithrombin III
  • Deficiency of protein C
  • Deficiency of protein S

Risk Factors

  • Pregnant women with predisposing factors such as:
  • A personal or family history of thromboembolism (deep vein thrombosis), pulmonary embolism (blood clot in the lung), cerebrovascular accidents (i.e. strokes)
  • A personal history of pregnancy complications such as unexplained intrauterine death, preeclampsia, abruptio placenta, intrauterine growth retardation, placental insufficiency, should be tested for the condition.

Treatment

Treatment should be initiated as soon as possible after pregnancy is diagnosed biochemically (blood or urine hCG test) and be continued throughout gestation.

Severe thrombophilias (e.g. homozygous MTHFR mutations, protein C deficiency, prothrombin G20210A mutation) as well as cases of mild thrombophilias associated  with one or more of the pregnancy complications mentioned above, are best treated with low-molecular weight heparin (LMWH) taken throughout pregnancy.

For other (milder) thrombophilias and no history of prior pregnancy complications: Low-dose aspirin with the B vitamins folic acid, B6 and B12.

________________________________________________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com

………………………………………………………………..

 

HCG doubling question

Name: Timea H

Dear Dr. Sher,
I would like to ask about my hcg blood test results. It was not only doubled but fourfold in 48h. On Monday I had 220,9 nmol and 2 days later that was 996 nmol. Does it mean something wrong or not necessarily? Thank you for your help.

Author

Answer:

No ! It looks good!

Going through IVF is a major investment, emotionally, physically, and financially, for every patient or couple. One of the most crucial moments is receiving the result of the blood test for human chorionic gonadotropin (hCG) pregnancy. It’s a big deal! The days after the embryo transfer, waiting for this result, can be extremely stressful. That’s why it’s crucial for the IVF doctor and staff to handle this information with care and professionalism. They should be accessible to the patient/couple and provide results promptly and sensitively.

Testing urine or blood to check for human chorionic gonadotropin (hCG) is the best way to confirm pregnancy. Urine tests are cheaper and more commonly used. They are also more convenient because they can be done anywhere. However, blood tests are more reliable and sensitive than urine tests. They can detect pregnancy earlier and at lower hCG levels. Blood tests are also more accurate and can track changes in hCG levels over time. Urine tests can detect hCG when blood levels are above 20IU, which is about 16-18 days after ovulation or 2-3 days after a missed period. Blood tests can measure any concentration of hCG about 12-13 days after ovulation.

Detecting hCG in the blood early on and tracking its increase is especially useful for women undergoing fertility treatments like controlled ovarian stimulation or in vitro fertilization. The sooner hCG is detected and measured, the more information can be gathered about the success of implantation and the health of the developing embryo.

Typically, two beta hCG blood tests are done, spaced 2-4 days apart. It’s best to wait for the results of the second test before reporting on the pregnancy. This is because an initial result can change, even from equivocal or negative to positive. Sometimes a normal embryo takes longer to implant, and the hCG level can be initially low or undetectable. Regardless of the initial level, the test should be repeated after two days to check for a significant rise in hCG. A significant rise usually indicates that an embryo is implanting, which suggests a possible pregnancy. Waiting for the second test result helps avoid conveying false hope or disappointment.

It’s important to note that beta hCG levels don’t double every two days throughout pregnancy. Once the levels rise above 4,000U, they tend to increase more slowly. Except in specific cases like IVF using an egg donor or transfer of genetically tested embryos, the birth rate following IVF in younger women is around 40% per embryo transfer. Patients need to have realistic expectations and should be informed about how and when they will receive the news, as well as counseling in case of a negative outcome.

When an embryo starts to implant, it releases the pregnancy hormone hCG into the woman’s bloodstream. Around 12 days after egg retrieval, 9 days after a day 3 embryo transfer, or 7 days after a blastocyst transfer, a woman should have a quantitative beta hCG blood pregnancy test performed. By that time, most of the hCG injected to prepare the eggs for retrieval should have cleared from the bloodstream. So, if the test detects more than 10 IU of hCG per ml of blood, it indicates that the embryo has attempted to implant. In third-party IVF (e.g., ovum donation, gestational surrogacy, embryo adoption, or frozen embryo transfers), no hCG trigger is administered, so any amount of hCG detected in the blood is considered significant.

Sometimes, there is a slow initial rise in hCG between the first and second tests (failure to double every 48 hours). In such cases, a third and sometimes a fourth hCG test should be done at two-day intervals. A failure to double on the third and/or fourth test is a poor sign and could indicate a failed or dysfunctional implantation. In some cases, a progressively slow rising hCG level might indicate an ectopic pregnancy, which requires additional testing and follow-up.

In certain situations, the first beta hCG level starts high, drops with the second test, and then starts doubling again. This could suggest that initially, multiple embryos started to implant but only one survived to continue a healthy implantation.

It’s customary for the IVF clinic staff to inform the patient/couple and the referring physician about the hCG pregnancy test results. Often, the IVF physician or nurse-coordinator coordinates with the referring physician to arrange all necessary pregnancy tests. If the patient/couple prefer to make their own arrangements, the program should provide detailed instructions.

In some cases, when the two blood pregnancy tests show that one or more embryos are implanting, certain programs recommend daily injections of progesterone or the use of vaginal hormone suppositories for several weeks to support the implantation process. Others give hCG injections three times a week until the pregnancy can be confirmed by ultrasound examination. Some IVF programs don’t prescribe any hormones after the embryo transfer.

Patients with appropriate doubling of hCG levels within two days after frozen embryo transfer (FET) or third-party IVF procedures such as surrogacy or egg donation may receive estradiol and progesterone injections, often along with vaginal hormone suppositories, for 10 weeks after the implantation is diagnosed by blood pregnancy testing.

A positive Beta hCG blood pregnancy test indicates the possibility of conception, but ultrasound confirmation is needed to confirm the pregnancy. Until then, it is referred to as a “chemical pregnancy.” Only when ultrasound examination confirms the presence of a gestational sac, clinical examination establishes a viable pregnancy, or after abortion when products of conception are detected, is it called a clinical intrauterine pregnancy.

A significantly elevated  hCG blood level without concomitant detection of an gestational sac inside the uterus by ultrasound after 5 weeks gestation raises the suspicion of an ectopic (tubal) pregnancy.

The risk of miscarriage gradually decreases once a viable clinical pregnancy is diagnosed (a conceptus with a regular heartbeat of 110-180 beats per minute). From this point onward, the risk of miscarriage is usually 10- 15% for women under 40 years old and around 35% for women in their early forties.

Dealing with successful IVF cases is relatively easy as everyone feels happy and validated. The real challenge lies in handling unsuccessful cases. Setting rational expectations from the beginning is crucial. In some cases (fortunately rare), emotional pressure may overwhelm the patient/couple, leading to a need for counseling or psychiatric therapy. I always advise my patients that receiving optimal care doesn’t always guarantee the desired outcome. There are many variables beyond our control, especially the unpredictable nature of fate. With around 36 years of experience in this field, I strongly believe that when it comes to IVF, the saying “man proposes while God disposes” always holds.

There are a few important things to consider when interpreting blood hCG levels. Levels can vary widely, ranging from 5mIU/ml to over 400mIU/ml, 10 days after ovulation or egg retrieval. The levels double every 48-72 hours until the 6th week of pregnancy, after which the doubling rate slows down to about 96 hours. By the end of the 1st trimester, hCG levels reach 13,000-290,000 IU and then slowly decline to around 26,000-300,000 IU at full term. Here are the average hCG levels during the first trimester:

  • 3 weeks after the last menstrual period (LMP): 5-50 IU
  • 4 weeks LMP: 5-426 IU
  • 5 weeks LMP: 18-7,340 IU
  • 6 weeks LMP: 1,080-56,500 IU
  • 7-8 weeks LMP: 7,650-229,000 IU
  • 9-12 weeks LMP: 25,700-288,000 IU

Most doctors wait until around the 7th week to perform an ultrasound to confirm pregnancy. By that time, the heartbeat should be clearly visible, providing a more reliable assessment of the pregnancy’s viability.

In some cases, blood hCG levels can be unusually high or increase faster than normal. This could indicate multiple pregnancies or a molar pregnancy. Rarely, conditions unrelated to pregnancy, such as certain ovarian tumors or cancers, can cause detectable hCG levels in both blood and urine.

 

To summarize, testing urine or blood for hCG is the most reliable way to confirm pregnancy. Urine tests are more common and convenient, while blood tests are more accurate and can detect pregnancy earlier. Tracking hCG levels in the blood is especially important for women undergoing fertility treatments. It’s essential to wait for the results of a second blood test before confirming pregnancy to avoid false hope or disappointment. Interpreting hCG levels requires considering various factors, and doctors usually perform an ultrasound around the 7th week for a more accurate assessment. Unusually high hCG levels may indicate multiple pregnancies or other conditions unrelated to pregnancy. Providing sensitive and timely communication of results is crucial for IVF clinics to support patients through the emotional journey.

_____________________________________________________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com

………………………………………………………………..

 

 

 

 

Multiple miscarriages

Name: Ludmila K

Dear Dr. Sher,
I would like to ask you, if there is any possibility to “prevent” a miscarriage, or help my body to deliver a baby overall.
Or any of your ideas just to help somehow.

I’m 29 and in the past I had 3 miscarriages (spontaneous pregnancies during 7-8 years) and 2 miscarriages (IVF – FET pregnancies during last 9 months). In all cases the embryo stopped developing at about 6-7 weeks.
In the last two pregnancies I took progesterone (200mg at the morning and 200mg in the evening) and estrofem (2mg at the morning and 2mg in the evening) and lastly acetylsalicylic acid (100mg in the evening). I also use active form of follic acid.

We already found out these problems from last few years and from blood testing: PCOS, obesity, hormonal imbalance, higher factor VIII (196%), positive ACLA IgG (41,4CU), limit value of a-annexin igG (5,0U/ml).

Now I’m pregnant again via FET (now I’m about 5+2) and I’m really not sure, if we can do anything else, to help except all above. At least from my point of view. This is our last possible embryo, so I’m trying my best in everything. Also a note, on husband’s side is everything without problem.

If you have any tip for another bloodworks, tests, what to look on, or just tips in general, it would be helpful.

Thank you in advance.

Author

Answer:

When it comes to reproduction, humans face challenges compared to other mammals. A significant number of fertilized eggs in humans do not result in live births, with up to 75% failing to develop, and around 30% of pregnancies ending within the first 10 weeks  (first trimester). Recurrent pregnancy loss (RPL) refers to two or more consecutive failed pregnancies, which is relatively rare, affecting less than 5% of women for two losses and only 1% for three or more losses. Understanding the causes of pregnancy loss and finding solutions is crucial for those affected. This article aims to explain the different types of pregnancy loss and shed light on potential causes.

Types of Pregnancy Loss: Pregnancy loss can occur at various stages, leading to different classifications:

  1. Early Pregnancy Loss: Also known as a miscarriage, this typically happens in the first trimester. Early pregnancy losses are usually sporadic, not recurring. In over 70% of cases, these losses are due to chromosomal abnormalities in the embryo, where there are more or fewer than the normal 46 chromosomes. Therefore, they are not likely to be repetitive.
  2. Late Pregnancy Loss: Late pregnancy losses occur after the first trimester (12th week) and are less common (1% of pregnancies). They often result from anatomical abnormalities in the uterus or cervix. Weakness in the cervix, known as cervical incompetence, is a frequent cause. Other factors include developmental abnormalities of the uterus, uterine fibroid tumors, intrauterine growth retardation, placental abruption, premature rupture of membranes, and premature labor.

Causes of Recurrent Pregnancy Loss (RPL): Recurrent pregnancy loss refers to multiple consecutive miscarriages. While chromosomal abnormalities are a leading cause of sporadic early pregnancy losses, RPL cases are mostly attributed to non-chromosomal factors. Some possible causes include:

  1. Uterine Environment Problems: Issues with the uterine environment can prevent a normal embryo from properly implanting and developing. These problems may include inadequate thickening of the uterine lining, irregularities in the uterine cavity (such as polyps, fibroid tumors, scarring, or adenomyosis), hormonal imbalances (progesterone deficiency or luteal phase defects), and deficient blood flow to the uterine lining.
  2. Immunologic Implantation Dysfunction (IID): IID is a significant cause of RPL, contributing to 75% of cases where chromosomally normal embryos fail to implant. It involves the immune system’s response to pregnancy, which can interfere with successful implantation.
  3. Blood Clotting Disorders: Thrombophilia, a hereditary clotting disorder, can disrupt the blood supply to the developing fetus, leading to pregnancy loss.
  4. Genetic and Structural Abnormalities: Genetic abnormalities are rare causes of RPL, while structural chromosomal abnormalities occur infrequently (1%). Unbalanced translocation, where part of one chromosome detaches and fuses with another, can lead to pregnancy loss. Studies also suggest that damaged sperm DNA can negatively impact fetal development and result in miscarriage.

 

IMMUNOLOGIC IMPLANTATION DYSFUNCTION AND RPL:

 

Autoimmune IID: Here an immunologic reaction is produced by the individual to his/her body’s own cellular components. The most common antibodies that form in such situations are APA and antithyroid antibodies (ATA). But it is only when specialized immune cells in the uterine lining, known as cytotoxic lymphocytes (CTL) and natural killer (NK) cells, become activated and start to release an excessive/disproportionate amount of TH-1 cytokines that attack the root system of the embryo, that implantation potential is jeopardized. Diagnosis of such activation requires highly specialized blood test for cytokine activity that can only be performed by a handful of reproductive immunology reference laboratories in the United States. Alloimmune IID, (i.e., where antibodies are formed against antigens derived from another member of the same species), is believed to be a common immunologic cause of recurrent pregnancy loss. Autoimmune IID is often genetically transmitted. Thus, it should not be surprising to learn that it is more likely to exist in women who have a family (or personal) history of primary autoimmune diseases such as lupus erythematosus (LE), scleroderma or autoimmune hypothyroidism (Hashimoto’s disease), autoimmune hyperthyroidism (Grave’s disease), rheumatoid arthritis, etc. Reactionary (secondary) autoimmunity can occur in conjunction with any medical condition associated with widespread tissue damage. One such gynecologic condition is endometriosis. Since autoimmune IID is usually associated with activated NK and T-cells from the outset, it usually results in such very early destruction of the embryo’s root system that the patient does not even recognize that she is pregnant. Accordingly, the condition usually presents as “unexplained infertility” or “unexplained IVF failure” rather than as a miscarriage. Alloimmune IID, on the other hand, usually starts off presenting as unexplained miscarriages (often manifesting as RPL). Over time as NK/T cell activation builds and eventually becomes permanently established the patient often goes from RPL to “infertility” due to failed implantation. RPL is more commonly the consequence of alloimmune rather than autoimmune implantation dysfunction. However, regardless, of whether miscarriage is due to autoimmune or alloimmune implantation dysfunction the final blow to the pregnancy is the result of activated natural killer cells (NKa) and cytotoxic lymphocytes (CTL B) in the uterine lining that damage the developing embryo’s “root system” (trophoblast) so that it can no longer sustain the growing conceptus. This having been said, it is important to note that autoimmune IID is readily amenable to reversal through timely, appropriately administered, selective immunotherapy, and alloimmune IID is not. It is much more difficult to treat successfully, even with the use of immunotherapy. In fact, in some cases the only solution will be to revert to selective immunotherapy plus using donor sperm (provided there is no “match” between the donor’s DQa profile and that of the female recipient) or alternatively to resort to gestational surrogacy.

 

DIAGNOSING THE CAUSE OF RPL.

In the past, women who miscarried were not evaluated thoroughly until they had lost several pregnancies in a row. This was because sporadic miscarriages are most commonly the result of embryo numerical chromosomal irregularities (aneuploidy) and thus not treatable. However, a consecutive series of miscarriages points to a repetitive cause that is non-chromosomal and is potentially remediable. Since RPL is most commonly due to a uterine pathology or immunologic causes that are potentially treatable, it follows that early chromosomal evaluation of products of conception could point to a potentially treatable situation. Thus, I strongly recommend that such testing be done in most cases of miscarriage. Doing so will avoid a great deal of unnecessary heartache for many patients. Establishing the correct diagnosis is the first step toward determining effective treatment for couples with RPL. It results from a problem within the pregnancy itself or within the uterine environment where the pregnancy implants and grows. Diagnostic tests useful in identifying individuals at greater risk for a problem within the pregnancy itself include Karyotyping (chromosome analysis) both prospective parents Assessment of the karyotype of products of conception derived from previous miscarriage specimens Ultrasound examination of the uterine cavity after sterile water is injected or sonohysterogram, fluid ultrasound, etc.) Hysterosalpingogram (dye X-ray test) Hysteroscopic evaluation of the uterine cavity Full hormonal evaluation (estrogen, progesterone, adrenal steroid hormones, thyroid hormones, FSH/LH, etc.) Immunologic testing to include Antiphospholipid antibody (APA) panel Antinuclear antibody (ANA) panel Antithyroid antibody panel (i.e., antithyroglobulin and antimicrosomal antibodies) Reproductive immunophenotype Natural killer cell activity (NKa) assay (i.e., K562 target cell test) Alloimmune testing of both the male and female partners

 

TREATMENT OF RPL

  • Treatment for Anatomic Abnormalities of the Uterus: 

This involves restoration through removal of local lesions such as fibroids, scar tissue, and endometrial polyps or timely insertion of a cervical cerclage (a stitch placed around the neck of the weakened cervix) or the excision of a uterine septum when indicated. Treatment of Thin Uterine Lining: A thin uterine lining has been shown to correlate with compromised pregnancy outcome. Often this will be associated with reduced blood flow to the endometrium. Such decreased blood flow to the uterus can be improved through treatment with sildenafil and possibly aspirin. sildenafil (Viagra) Therapy. Viagra has been used successfully to increase uterine blood flow. However, to be effective it must be administered starting as soon as the period stops up until the day of ovulation and it must be administered vaginally (not orally). Viagra in the form of vaginal suppositories given in the dosage of 25 mg four times a day has been shown to increase uterine blood flow as well as thickness of the uterine lining. To date, we have seen significant improvement of the thickness of the uterine lining in about 70% of women treated. Successful pregnancy resulted in 42% of women who responded to the Viagra. It should be remembered that most of these women had previously experienced repeated IVF failures. Use of Aspirin: This is an anti-prostaglandin that improves blood flow to the endometrium. It is administered at a dosage of 81 mg orally, daily from the beginning of the cycle until ovulation.

 

Treating Immunologic Implantation Dysfunction with Selective Immunotherapy: 

Modalities such as intralipid (IL), intravenous immunoglobulin-G (IVIG),  heparinoids (Lovenox/Clexane), and corticosteroids (dexamethasone, prednisone, prednisolone) can be used in select cases depending on autoimmune or alloimmune dysfunction. The Use of IVF in the Treatment of RPL In the following circumstances, IVF is the preferred option: When in addition to a history of RPL, another standard indication for IVF (e.g., tubal factor, endometriosis, and male factor infertility) is superimposed and in cases where selective immunotherapy is needed to treat an immunologic implantation dysfunction.  The reason for IVF being a preferred approach when immunotherapy is indicated is that in order to be effective, immunotherapy needs to be initiated well before spontaneous or induced ovulation. Given the fact that the anticipated birthrate per cycle of COS with or without IUI is at best about 15%, it follows that short of IVF, to have even a reasonable chance of a live birth, most women with immunologic causes of RPL would need to undergo immunotherapy repeatedly, over consecutive cycles. Conversely, with IVF, the chance of a successful outcome in a single cycle of treatment is several times greater and, because of the attenuated and concentrated time period required for treatment, IVF is far safer and thus represents a more practicable alternative Since embryo aneuploidy is a common cause of miscarriage, the use of preimplantation genetic screening/ testing (PGS/T), with tests such as next generation gene sequencing (NGS), can provide a valuable diagnostic and therapeutic advantage in cases of RPL. PGS/T requires IVF to provide access to embryos for testing. There are a few cases of intractable alloimmune dysfunction due to absolute DQ alpha gene matching ( where there is a complete genotyping match between the male and female partners) where Gestational Surrogacy or use of donor sperm could represent the only viable recourse, other than abandoning treatment altogether and/or resorting to adoption. Other non-immunologic factors such as an intractably thin uterine lining or severe uterine pathology might also warrant that last resort consideration be given to gestational surrogacy. Conclusion:

Understanding the causes of pregnancy loss is crucial for individuals experiencing recurrent miscarriages. While chromosomal abnormalities are a common cause of sporadic early pregnancy losses, other factors such as uterine environment problems, immunologic implantation dysfunction, blood clotting disorders, and genetic or structural abnormalities can contribute to recurrent losses. By identifying the underlying cause, healthcare professionals can provide appropriate interventions and support to improve the chances of a successful pregnancy. The good news is that if a couple with RPL is open to all of the diagnostic and treatment options referred to above, a live birthrate of 70%–80% is ultimately achievable.

 ____________________________________________________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com

………………………………………………………………..

 

Scroll to Top