Ask Our Doctors

Supporting Your Journey

Our Medical Directors are outstanding physicians that you will find to be very personable and compassionate, who take care to ensure that you have the most cutting-edge fertility treatments at your disposal. This is your outlet to ask your questions to the doctors.

  • Dear Patients,

    I created this forum to welcome any questions you have on the topic of infertility, IVF, conception, testing, evaluation, or any related topics. I do my best to answer all questions in less than 24 hours. I know your question is important and, in many cases, I will answer within just a few hours. Thank you for taking the time to trust me with your concern.

    – Geoffrey Sher, MD

Fill in the following information and we’ll get back to you.

Please enable JavaScript in your browser to complete this form.
Name
Disclaimer

Changes to a 4th cycle

Name: Amy E

I’m at a bit of a loss.
Having ICSI for secondary infertility (1st child conceived naturally age 29) and just midway through my 3rd cycle. I have paid up for a 4th cycle already so I’m keen to get some advice about what to change/ask for at my next appointment.

cycle 1 – used Gonal-F (300), looked like I had a fair few follicles on scans (probably about 10 on the left only, my right ovary has never produced an egg in any ICSI cycle), single trigger shot, disaster at egg collection (even consultant was shocked) as only got 2 eggs and the other follicles were “empty” which they couldn’t explain. Did a day 3 transfer. BFN. Nothing to freeze.

cycle 2 – used meriofert 300. Lower number of follicles on scan but decided to go for it. Double trigger shot (had read this can help with empty follicle syndrome). 5 eggs collected. Only 3 mature. Did a day 3 transfer. BFN. Then did a FET – BFN.

cycle 3ssue. Please call my assistant, Patti Converse at 702-533-2691 and set up an online consultation with me.

im just so exasperated at this point. The embryologist thinks it s a quantity issue rather than quality as we have made a blast but an increase in the Meriofert has led to a worse outcome. Pergoveris has been mentioned for cycle 4.

my AMH is 5.7pmol and I’m 34.

cycle 4 realistically has to be our last go and it would be nice to at least start off with a higher egg number.

And just to add-I’ve been taking coenzyme Q10, probiotics, and this cycle I’ve started aspirin and clexane as blood tests have shown raised anticardiolipin antibodies which may cause implantation failure.

Thank you for any help.
I’m unsure whether Gonal F with a double trigger shot would yield better results or Pergoveris or a more “mild” approach.

Author

Answer:

WE would need to discuss this complex matter. I suggest you call my assistant, Patti Converse (702-533-2691 and set up an online consultation with me.

Geoff Sher

PLEASE SHARE THIS WITH OTHERS AND HELP SPREAD THE WORD!!

 

Herewith are  online links to 2  E-books recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

  1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) ; https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

 

  1. Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link ;https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

 

I invite you to visit my very recently launched “Podcast”,  “HAVE A BABY” on RUMBLE;   https://rumble.com/c/c-3304480

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com\

 

 

Recommendation for Fertility Doctors in Cape Town

Name: Lindsay T

Hi Dr Sher, my name is Lindsay Tame. I recently heard you on a podcast and immediately recognized the South African accent. Im 42 years old and have done 3x IUI at Cape Fertility with Dr le Roux, 2x full rounds of ICSI and 2x ‘half’ rounds (stopping after aspiration due to the 1 egg being a dud and nothing to implant) with Dr Dawie Slabbert at Panorama Fertility clinic. He says that its not worth doing another round and maybe consider egg donor. Im wanting to know if you have any Fertility specialists in Cape Town that you would recommend and are familiar with your extensive research? I know I still have eggs, and I’m a healthy active individual but my body is just not responding to the drugs.
Any information or pointers in the right direction or items to discuss with Dr Slabbert would be so welcome. Kindesr regards Lindsay

er

Author

Answer:

Perhaps we should talk. I suggest that you call my assistant, Patti Conve3rse (702-533-2691 and zset up an online consultation with me to discuss.

  • ADDRESSING ADVANCING AGE AND DIMINISHING OVARIAN RESERVE (DOR) IN IVF

Understanding the impact of age and ovarian reserve on the success of in vitro fertilization (IVF) is crucial when it comes to reproductive health. This article aims to simplify and clarify these concepts, emphasizing their significance in the selection of ovarian stimulation protocols for IVF. By providing you with this information, we hope to shed light on the importance of considering these factors and making informed decisions regarding fertility treatments.

  1. The Role of Eggs in Chromosomal Integrity: In the process of creating a healthy embryo, it is primarily the egg that determines the chromosomal integrity, which is crucial for the embryo’s competency. A competent egg possesses a normal karyotype, increasing the chances of developing into a healthy baby. It’s important to note that not all eggs are competent, and the incidence of irregular chromosome numbers (aneuploidy) increases with age.
  2. Meiosis and Fertilization: Following the initiation of the LH surge or the hCG trigger shot, the egg undergoes a process called meiosis, halving its chromosomes to 23. During this process, a structure called the polar body is expelled from the egg, while the remaining chromosomes are retained. The mature sperm, also undergoing meiosis, contributes 23 chromosomes. Fertilization occurs when these chromosomes combine, resulting in a euploid embryo with 46 chromosomes. Only euploid embryos are competent and capable of developing into healthy babies.
  3. The Significance of Embryo Ploidy: Embryo ploidy, referring to the numerical chromosomal integrity, is a critical factor in determining embryo competency. Aneuploid embryos, which have an irregular number of chromosomes, are often incompetent and unable to propagate healthy pregnancies. Failed nidation, miscarriages, and chromosomal birth defects can be linked to embryo ploidy issues. Both egg and sperm aneuploidy can contribute, but egg aneuploidy is usually the primary cause.
  4. Embryo Development and Competency: Embryos that develop too slowly or too quickly, have abnormal cell counts, contain debris or fragments, or fail to reach the blastocyst stage are often aneuploid and incompetent. Monitoring these developmental aspects can provide valuable insights into embryo competency.
  5. Diminished Ovarian Reserve (DOR): As women advance in their reproductive age, the number of remaining eggs in the ovaries decreases. Diminished ovarian reserve (DOR) occurs when the egg count falls below a certain threshold, making it more challenging to respond to fertility drugs effectively. This condition is often indicated by specific hormone levels, such as elevated FSH and decreased AMH. DOR can affect women over 40, but it can also occur in younger

 

Why IVF should be regarded as treatment of choice for older women an those who have diminished ovarian reserve ( DOR):

Understanding the following factors will go a long way in helping you to make an informed decision and thereby improve the chances of a successful IVF outcome.

  1. Age and Ovarian Reserve: Chronological age plays a vital role in determining the quality of eggs and embryos. As women age, there is an increased risk of aneuploidy (abnormal chromosome numbers) in eggs and embryos, leading to reduced competency. Additionally, women with declining ovarian reserve (DOR), regardless of their age, are more likely to have aneuploid eggs/embryos. Therefore, it is crucial to address age-related factors and ovarian reserve to enhance IVF success.
  2. Excessive Luteinizing Hormone (LH) and Testosterone Effects: In women with DOR, their ovaries and developing eggs are susceptible to the adverse effects of excessive LH, which stimulates the overproduction of male hormones like testosterone. While some testosterone promotes healthy follicle growth and egg development, an excess of testosterone has a negative impact. Therefore, in older women or those with DOR, ovarian stimulation protocols that down-regulate LH activity before starting gonadotropins are necessary to improve egg/embryo quality and IVF outcomes.
  3. Individualized Ovarian Stimulation Protocols: Although age is a significant factor in aneuploidy, it is possible to prevent further decline in egg/embryo competency by tailoring ovarian stimulation protocols. Here are my preferred protocols for women with relatively normal ovarian reserve:
  1. Conventional Long Pituitary Down Regulation Protocol:
  • Begin birth control pills (BCP) early in the cycle for at least 10 days.
  • Three days before stopping BCP, overlap with an agonist like Lupron for three days.
  • Continue daily Lupron until menstruation begins.
  • Conduct ultrasound and blood estradiol measurements to assess ovarian status.
  • Administer FSH-dominant gonadotropin along with Menopur for stimulation.
  • Monitor follicle development through ultrasound and blood estradiol measurements.
  • Trigger egg maturation using hCG injection, followed by egg retrieval.
  1. Agonist/Antagonist Conversion Protocol (A/ACP):
  • Similar to the conventional long down regulation protocol but replace the agonist with a GnRH antagonist from the onset of post-BCP menstruation until the trigger day.
  • Consider adding supplementary human growth hormone (HGH) for women with DOR.
  • Consider using “priming” with estrogen prior to gonadotropin administration
  1. Protocols to Avoid for Older Women or Those with DOR: Certain ovarian stimulation protocols may not be suitable for older women or those with declining ovarian reserve:
  • Microdose agonist “flare” protocols
  • High dosages of LH-containing fertility drugs such as Menopur
  • Testosterone-based supplementation
  • DHEA supplementation
  • Clomiphene citrate or Letrozole
  • Low-dosage hCG triggering or agonist triggering for women with DOR

 

 

Preimplantation Genetic Screening/Testing(PGS/T): PGS/T is a valuable tool for identifying chromosomal abnormalities in eggs and embryos. By selecting the most competent (euploid) embryos, PGS/T significantly improves the success of IVF, especially in older women or those with DOR.

Understanding the impact of advancing age and declining ovarian reserve on IVF outcomes is essential when making decisions about fertility treatments. Age-related factors can affect egg quality and increase the likelihood of aneuploid embryos with resultant IVF failure. Diminished ovarian reserve (DOR) further complicates the process. By considering these factors, you can make informed choices and work closely with fertility specialists to optimize your chances of success. Remember, knowledge is power, and being aware of these aspects empowers you to take control of your reproductive journey.

 

PLEASE SHARE THIS WITH OTHERS AND HELP SPREAD THE WORD!!

 

Herewith are  online links to 2  E-books recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

  1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) ; https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

 

  1. Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link ;https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

 

I invite you to visit my very recently launched “Podcast”,  “HAVE A BABY” on RUMBLE;   https://rumble.com/c/c-3304480

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com\

 

 

Geoff Sh

Haploid

Name: Addison J

What could cause a day 7 BB blastocyst that was fertilized via ICSI to be haploid (PGT-A results)?

Author

Answer:

It is likely “incompetent”.

 

Geoff Sher

egg donation

Name: Judi F

I want to donate eggs, I’ve done it before

Author

Answer:

Please call Rozanne at “Footsteps to Family” (702-860-0097) for input.

Geoff Sher

Advice for last IVF round

Name: Claire C

Dear Dr. Sher:

Thank you for hosting this forum.

I am just shy of 41 with social infertility and have had two failed IVF cycles. The first used an antagonist protocol at 300 IU gonadotropin and resulted in one whole chromosome aneuploid blast. The second used estrogen-only priming, then 150 IU gonadotropin, but resulted in a lead follicle. Stims were restarted ten days after triggering and one whole chromosome blast resulted again.

I only have one more IVF cycle covered by my insurance left and my RE is planning on what sounds like a Lupron down regulation protocol. Does this sound appropriate for my case? All my numbers have been average for my age, so just outside DOR range. My last AMH a year ago was 1.14.

Also, eould you recommend any add-ons such as Omnitrope? My clinic does not use it but I’m getting other opinions before embarking on this last cycle.

Thank you.

Author

Answer:

Please read what follows and thereupon, might I suggest that we talk . Please call my assistant. Patti at 702-533-2691 and set up an online consultation with me to discuss.

The journey of in vitro fertilization can be a rollercoaster of emotions for many patients. Often times they have to face the harsh reality that the number and quality of eggs retrieved has fallen short of their expectations. Then, should fertilization of these eggs not propagate  chromosomally normal (euploid), “competent” embryos suitable for transfer to the uterus, many such patients find themselves in a state of emotional distress. They grapple with the inevitable questions of why this happened and how to prevent it from occurring again in the future. This article aims to delve into these queries, providing insights, rational explanations, and therapeutic options. It is an invitation to explore the light at the end of the tunnel. Readers are urged to carefully absorb the entirety of the article in the hope of finding valuable information and renewed hope.

  • The Importance of Chromosomal Integrity: While sperm quality is an important factor, egg quality is by far the most important when it comes to the generation of embryos that are capable of propagating healthy babies (“competent”). In this regard, chromosomal integrity of the egg and embryo, although it is not the only factor , is certainly the main determinant of such competency.
  • The woman’s age: About two thirds of a woman’s eggs in her twenties or early thirties have the correct number of chromosomes, which is necessary for a healthy pregnancy. As a woman gets older, the percentage of eggs with the right number of chromosomes decreases. By age 40, only about one in every 5-6 eggs is likely to be normal, and by the mid-forties, less than one in ten eggs will be normal.
  • Ovarian Reserve (number of available in the ovaries): A woman is born with all the eggs she will ever have. She starts using these eggs when she begins ovulating during puberty. At first, the eggs are used up quickly, but as she gets older, the number of eggs starts to run out. Her brain and pituitary gland try to stimulate the production of more eggs by increasing the output of Follicle Stimulating Hormone (FSH), but unfortunately, this often doesn’t work. When the number of remaining eggs in her ovaries falls below a certain level (which can be different for each woman), her FSH level rises, and production of the ovarian hormone, AMH decreases. This is the start of diminishing ovarian reserve (DOR). Most women experience the onset of DOR in their late 30s or early 40s, but it can happen earlier for some. The lower the ovarian reserve, the lower the AMH level will be, and the fewer eggs will be available for harvesting during IVF-egg retrieval. In such cases, a higher dosage of fertility drugs might be needed to promote better egg production in future attempts. . On the other hand, higher AMH levels mean more eggs are available, and lower doses of fertility drugs are usually needed. DOR is commonly associated with increased bioactivity of pituitary gland-produced LH. This LH activates production of ovarian male hormones (androgens)…predominantly testosterone by ovarian connective tissue (stroma) . While a small amount of  ovarian testosterone is absolutely necessary for optimal follicle and egg development, excessive ovarian testosterone will often access the follicle , and compromise both egg quality and follicle growth and development. In some cases, rapidly increasing  LH-release (“premature LH-surge”) with excessive induced ovarian testosterone can lead to “premature luteinization”  of the follicles with cessation in growth and even to“ premature ovulation”.
  • Importance of Individualized Controlled Ovarian Stimulation (COS) Protocol: It’s not surprising that DOR is more common in older women, but regardless of age, having DOR makes a woman’s eggs more likely to be compromised during controlled ovarian stimulation (COS). The choice of the COS protocol is crucial to preventing unintentional harm to egg and embryo quality. The wrong protocol can disrupt normal egg development and increase the risk of abnormal embryos. That’s why it’s important to tailor the COS protocol to each individual’s needs. This helps optimize follicle growth and the quality of eggs and embryos. The timing of certain treatments is also important for successful outcomes.
  • Embryo Competency and Blastocyst Development: Embryos that don’t develop into blastocysts by day 6 after fertilization are usually chromosomally abnormal or aneuploid (”incompetent”) and not suitable for transfer. However, not all blastocysts are guaranteed to be normal and capable of developing into a healthy baby. As a woman gets older, the chances of a her embryos being chromosomally normal blastocyst decreases. For example, a blastocyst from a 30-year-old woman is more likely to be normal compared to one from a 40-year-old woman.

The IVF stimulation protocol has a big impact on the quality of eggs and embryos especially in women with DOR. Unfortunately, many IVF doctors use the same COS “recipe approach” for everyone without considering individual differences. Using personalized protocols can greatly improve the success of IVF. While we can’t change genetics or reverse a woman’s age, a skilled IVF specialist can customize the COS protocol to meet each patient’s specific needs.

GONADOTROPIN RELEASING HORMONE AGONISTS (GNRHA) AND GNRH-ANTAGONISTS:

  • Gonadotropin releasing hormone agonists (GnRHa). Examples are  Lupron, Buserelin, Superfact, and Decapeptyl . These are commonly used to launch  ovarian stimulation cycles. They work by initially causing a release of pituitary gonadotropins, followed by a decrease in LH and FSH levels within 4-7 days. This creates a relatively low LH environment when COS begins, which is generally beneficial for egg development. However, if GnRHa are administered starting concomitant with gonadotropin stimulation (see GnRHa –“flare protocol” -below) it can cause an immediate surge in LH release, potentially leading to high levels of ovarian testosterone that can harm egg quality, especially in older women and those with diminished ovarian reserve (DOR).
  • Gonadotropin releasing hormone antagonists (GnRH-antagonists) : Examples are Ganirelix, Cetrotide, and Orgalutron. GnRH antagonists (take days   work quickly (within hours) to block pituitary LH release. Their purpose is to prevent excessive LH release during COS. In contrast, the LH-lowering effect of GnRH agonists takes several days to develop. Traditionally, GnRH antagonists are given starting on the 5th-7th day of gonadotropin stimulation. However, in older women and those with DOR, suppressing LH might happen too late to prevent excessive ovarian androgen production that can negatively impact egg development in the early stages of stimulation. That’s why I prefer to administer GnRH-antagonists right from the beginning of gonadotropin administration.

 

USING BIRTH CONTROL PILLS TO START OVARIAN STIMULATION:

Patients are often told that using birth control pills (BCP) to begin ovarian stimulation will suppress the response of the ovaries. This is true, but only if the BCP is not used correctly. Here’s the explanation:

In natural menstrual cycles and cycles stimulated with fertility drugs, the follicles in the ovaries need to develop receptors that respond to follicle-stimulating hormone (FSH) in order to properly respond to FSH stimulation. Pre-antral follicles (PAFs) do not have these receptors and cannot respond to FSH stimulation. The development of FSH responsivity requires exposure of the pre-antral follicles to FSH for several days, during which they become antral follicles (AFs) and gain the ability to respond to FSH-gonadotropin stimulation. In regular menstrual cycles, the rising FSH levels naturally convert PAFs to AFs. However, the combined BCP suppresses FSH. To counter this suppression, we need to promote increased  FSH production several days before starting COS. This allows the orderly conversion from PAFs to AFs, ensuring proper follicle and egg development.

GnRHa causes an immediate surge in FSH release by the pituitary gland, promoting the conversion from PAF to AF. Therefore, when women take the BCP control pill to launch a cycle of COS, they need to overlap the BCP with a GnRHa for a few days before menstruation. This allows the early recruited PAFs to complete their development and reach the AF stage, so they can respond appropriately to ovarian stimulation. By adjusting the length of time, the woman is on the birth control pill, we can regulate and control the timing of the IVF treatment cycle. Without this step, initiating ovarian stimulation in women coming off birth control pills would be suboptimal.

PROTOCOLS FOR CONTROLLED OVARIAN STIMULATION (COS):

  • GnRH Agonist Ovarian Stimulation Protocols:
    • The long GnRHa protocol: Here, a GnRHa (usually Lupron or Superfact) is given either in a natural cycle, starting 5-7 days before menstruation, overlapping with the BCP for three days. Thereupon,  the pill is stopped, while daily  GnRHa injections continue until menstruation occurs (usually 5-7 days later). The GnRHa causes a rapid rise in FSH and LH levels. This is followed about 3-4 days later , by a progressive decline in FSH and LH to near zero levels,  with a concomitant drop in ovarian estradiol and progesterone. This, in turn triggers uterine withdrawal bleeding (menstruation) within 5-7 days of starting the GnRHa administration. Gonadotropin treatment is then initiated while daily GnRHa injections continue to maintain a relatively low LH environment. Gonadotropin administration continues until the hCG “trigger” (see below).
    • Short GnRH-Agonist (“Flare”) Protocol: This protocol involves starting hormone therapy and using GnRH agonist at the same time. The goal is to boost FSH so that with concomitant stimulation with FSH-gonadotropins  + the GnRHa-induced surge in pituitary gland FSH release, will augment follicle development. However, this surge also leads to a rise in LH levels, which can cause an excessive production of ovarian male hormones (e.g., testosterone). This could potentially adversely affect the quality of eggs, especially in women over 39 years old, those with low ovarian reserve, and women with PCOS or DOR who already have increased LH sensitivity. In this way, these “flare protocols” can potentially decrease the success rates of IVF. While they are generally safe for younger women with normal ovarian reserve, I personally avoid using this approach on the off chance that even patients with normal ovarian reserve, might experience poor egg quality.
  • GnRH Antagonist-Ovarian Stimulation Protocols:
    • Conventional GnRH Antagonist Protocol: In this approach, daily GnRH antagonist injections are  given from the 5th to the 8th day of COS with gonadotropins to the day of the “trigger” (see below). Accordingly, although rapidly acting to lower LH , this effect of GnRH- antagonist only starts suppressing LH from well into the COS cycle which means the ovarian follicles are left exposed and unshielded from pituitary gland -produced, (endogenous) LH during the first several days of stimulation. This can be harmful, especially in the early stage of COS when eggs and follicles are most vulnerable to the effects of over-produced LH-induced excessive ovarian testosterone. Therefore, I believe the Conventional GnRH Antagonist Protocol is not ideal for older women, those with low ovarian reserve, and women with PCOS who already have elevated LH activity. However, this protocol is acceptable for younger women with normal ovarian reserve, although I personally avoid using this approach on the off chance that even patients with normal ovarian reserve, might experience poor egg quality.

It’s important to note that the main reason for using GnRH antagonists is to prevent a premature LH surge, which is associated with poor egg and embryo quality due to follicular exhaustion. However, calling it a “premature LH surge” is misleading because it actually represents the culmination of a progressive increase in LH-induced ovarian testosterone. A better term would be “premature luteinization”. In some such cases, the rise in LH can precipitate “premature ovulation”.

 

  • Agonist/Antagonist Conversion Protocol (A/ACP): I recommend this protocol for many of my patients, especially for older women and those with DOR or PCOS. The woman starts by taking a BCP for 7-10 days. This overlapped with a GnRHa for 3 days and continued until menstruation ensues about 5-7 days later. At this point  she “converts” from the GnRH-agonist to a GnRH-antagonist (Ganirelix, Orgalutron, or Cetrotide). A few days after this conversion from agonist to antagonist, COS with  gonadotropin stimulation starts. Both the antagonist and the gonadotropins are continued together until the hCG trigger. The purpose is to suppress endogenous LH release throughout the COS process and so  avoid over-exposure of follicles and eggs to LH-induced  excessive ovarian testosterone which as previously stated, can compromise egg and follicle growth and development.   Excessive ovarian testosterone can also adversely affect estrogen-induced growth of the uterine lining (endometrium). Unlike GnRH-agonists, antagonists do not suppress ovarian response to the gonadotropin stimulation. This is why the A/ACP is well-suited for older women and those with diminished ovarian reserve.
  • A/ACP with estrogen priming: This is a modified version of the A/ACP protocol used for women with very low ovarian reserve (AMH=<0.2ng/ml). Estrogen priming is believed to enhance the response of follicles to gonadotropins. Patients start their treatment cycle by taking a combined birth control pill (BCP) for 7-10 days. After that, they overlap daily administration of a GnRH agonist with the BCP for 3 days. The BCP is then stopped, and the daily agonist continues until menstruation ensues (usually 5-7 days later). At this point, the GnRH agonist is supplanted by daily injections of  GnRH antagonist and  Estradiol (E2) “priming” begins using E2 skin patches or intramuscular estradiol valerate injections twice weekly, while continuing the GnRH antagonist. Seven days after starting the estrogen priming COS begins using recombinant FSHr such as Follistim, Gonal-F or Puregon) +menotropin (e.g., Menopur) . The estrogen “priming” continues to the day of the “trigger” (see below).  Egg retrieval is performed 36 hours after the trigger.


Younger women (under 30 years) and women with absent, irregular, or dysfunctional ovulation, as well as those with polycystic ovarian syndrome (PCOS), are at risk of developing a severe condition called Ovarian Hyperstimulation Syndrome (OHSS), which can be life-threatening. To predict this condition, accurate daily blood E2 level monitoring is required.

 

TRIGGERING “EGG MATURATION PRIOR TO EGG RETRIEVAL”

  • The hCG “trigger”: When it comes to helping eggs mature before retrieval, one of the important decisions the doctor needs to make is choosing the “trigger shot” to facilitate the process. Traditionally, hCG (human chorionic gonadotropin) is derived from the urine of pregnant women (hCGu) while a newer recombinant hCG (hCGr), Ovidrel was recently  introduced. The ideal dosage of hCGu is 10,000U and for Ovidrel, the recommended dosage is 500mcg. Both have the same efficacy. The “trigger” is usually administered by intramuscular injection, 34-36 hours prior to egg retrieval.

Some doctors may choose to lower the dosage of hCG if there is a risk of severe ovarian hyperstimulation syndrome (OHSS). However, I believe that a low dose of hCG (e.g., 5000 units of hCGu or 250 mcg of hCGr ( Ovidrel) might not be enough to optimize egg maturation, especially when there are many follicles. Instead, I suggest using a method called “prolonged coasting” to reduce the risk of OHSS.

  • Using GnRH antagonist alone or combined with hCG as the trigger: Some doctors may prefer to use a GnRH- agonist  trigger instead of hCG to reduce the risk of OHSS. The GnRHa “trigger” acts by inducing a “surge of pituitary gland-LH. However, it is difficult to predict the amount of LH that is released in response to a standard agonist trigger. In my opinion, using hCG is a better choice, even in cases of ovarian hyperstimulation, with the condition that “prolonged coasting” is implemented beforehand.
  • Combined use of hCG + GnRH agonist: This approach is better than using a GnRH agonist alone but still not as effective as using the appropriate dosage of hCG.
  • Timing of the trigger: The trigger shot should be given when the majority of ovarian follicles have reached a size of more than 15 mm, with several follicles measuring 18-22 mm. Follicles larger than 22 mm often contain overdeveloped eggs, while follicles smaller than 15 mm usually have underdeveloped and potentially abnormal eggs.

SEVERE OVARIAN HYPERSTIMULATION SYNDROME (OHSS) & “PROLONGED COASTING”

OHSS is a life-threatening condition that can occur during controlled ovarian stimulation (COS) when the blood E2 (estradiol) level rises too high. It is more common in young women with high ovarian reserve, women with polycystic ovarian syndrome (PCOS), and young women who do not ovulate spontaneously. To prevent OHSS, some doctors may trigger egg maturation earlier, use a lower dosage of hCG, or “trigger” using a GnRHa. However, these approaches can compromise egg and embryo quality and reduce the chances of success.

To protect against the risk of OHSS while optimizing egg quality, Physicians can use one of two options. The first is “prolonged coasting,” a procedure I introduced more than three decades ago. It involves stopping gonadotropin therapy while continuing to administer the GnRHa until the risk of OHSS has decreased. The precise timing of “prolonged coasting” is critical. It should be initiated when follicles have reached a specific size accompanied and the  blood estradiol has reached a certain peak.  The second option is to avoid fresh embryo transfer and freeze all “competent” embryos for later frozen embryo transfers (FETs) at a time when the risk of OHSS has subsided. By implementing these strategies, both egg/embryo quality and maternal well-being can be maximized.

 

In the journey of fertility, a woman is blessed with a limited number of eggs, like precious treasures awaiting their time. As she blossoms into womanhood, these eggs are gradually used, and the reserves start to fade. Yet, the power of hope and science intertwines, as we strive to support the development of these eggs through personalized treatment. We recognize that each woman is unique, and tailoring the protocol to her individual needs can unlock the path to success. We embrace the delicate timing, understanding that not all embryos are destined for greatness. With age, the odds may shift, but our dedication remains steadfast, along with our ultimate objective, which is  to do everything possible to propagate  of a normal pregnancy while optimizing the  quality of that life after birth and all times, minimizing risk to the prospective parents.

 

_____________________________________________________________________________

PLEASE SHARE THIS WITH OTHERS AND HELP SPREAD THE WORD!!

Herewith are  online links to 2  E-books recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

  1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) ; https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

 

  1. Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link ;https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

 

I invite you to visit my very recently launched “Podcast”,  “HAVE A BABY” on RUMBLE;   https://rumble.com/c/c-3304480

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com\

 

 

Infertility

Name: Susanna Giselle V

Can you help me with infertility inmune issues

Author

Answer:

Absolutely I can!  Please call my assistant, Patti Converse (702-533-2691 or email her at concierge@sherfertility.com to set up an online consultation with me.

Geoff Sher

______________________________________________________

  • A RATIONAL BASIS FOR MANAGEMENT OF IMMUNOLOGIC CAUSES OF EMBRYO IMPLANTATION DYSFUNCTION

In the world of assisted reproduction, when IVF fails repeatedly or without explanation, it’s often assumed that poor embryo quality is the main culprit. However, this view oversimplifies the situation. The process of embryo implantation, which begins about six or seven days after fertilization, involves a complex interaction between embryonic cells and the lining of the uterus. These specialized cells, called trophoblasts, eventually become the placenta. When the trophoblasts meet the uterine lining, they engage in a communication process with immune cells through hormone-like substances called cytokines. This interaction plays a critical role in supporting the successful growth of the embryo. From the earliest stages, the trophoblasts establish the foundation for the exchange of nutrients, hormones, and oxygen between the mother and the baby. The process of implantation not only ensures the survival of early pregnancy but also contributes to the quality of life after birth.

There are numerous uterine factors that can impede embryo implantation potential. However, the vast majority relate to the following three (3) factors:

  1. Thin uterine lining (endometrium) . A lining that is <8mm in thickness at the time of ovulation, and/ or the administration of progesterone
  2. Irregularity the inner surface of the uterine cavity (caused by protruding sub-mucous fibroids, scar  tissue or polyps )
  • Immunologic factors that compromise implantation

Of these 3 factors, the one most commonly overlooked (largely because of the highly complex nature of the problem) is immunologic implantation dysfunction (IID), a common cause of “unexplained (often repeated) IVF failure and recurrent pregnancy loss. This article will focus on the one that most commonly is overlooked ….namely, immunologic implantation dysfunction (IID.

There is a growing recognition that problems with the immune function in the uterus can lead to embryo implantation dysfunction. The failure of proper immunologic interaction during implantation has been implicated as a cause of recurrent miscarriage, late pregnancy fetal loss, IVF failure, and infertility. Some immunologic factors that may contribute to these issues include antiphospholipid antibodies (APA), antithyroid antibodies (ATA) , and activated natural killer cells (NKa).

  • Activated natural Killer Cells (NKa):

During ovulation and early pregnancy, the uterine lining is frequented by NK cells and T-cells, which together make up more than 80% of the immune cells in the uterine lining. These cells travel from the bone marrow to the endometrium where they proliferate under hormonal regulation. When exposed to progesterone, they produce TH-1 and TH-2 cytokines. TH-2 cytokines help the trophoblast (embryo’s “root system”) to penetrate the uterine lining, while TH-1 cytokines induce apoptosis (cell suicide), limiting placental development to the inner part of the uterus. The balance between TH1 and TH-2 cytokines is crucial for optimal placental development. NK cells and T-cells contribute to cytokine production. Excessive TH-1 cytokine production is harmful to the trophoblast and endometrial cells, leading to programmed cell death and ultimately to implantation failure.

Functional NK cells reach their highest concentration in the endometrium around 6-7 days after ovulation or exposure to progesterone, which coincides with the time of embryo implantation.

It’s important to note that measuring the concentration of blood NK cells doesn’t reflect NK cell activation (NKa). The activation of NK cells is what matters. In certain conditions like endometriosis, the blood concentration of NK cells may be below normal, but NK cell activation is significantly increased.

There are several laboratory methods to assess NK cell activation (cytotoxicity), including immunohistochemical assessment of uterine NK cells and measuring TH-1 cytokines in the uterus or blood. However, the K-562 target cell blood test remains the gold standard. In this test, NK cells isolated from a woman’s blood are incubated with specific “target cells,” and the percentage of killed target cells is quantified. More than 12% killing indicates a level of NK cell activation that usually requires treatment. Currently, there are only a few Reproductive Immunology Reference Laboratories in the USA capable of reliably performing the K-562 target cell test.

There is a common misconception that adding IL (intralipid) or IVIg to NK cells can immediately downregulate NK cell activity. However, IL and IVIg cannot significantly suppress already activated NK cells. They are believed to work by regulating NK cell progenitors, which then produce downregulated NK cells. To assess the therapeutic effect, IL/IVIg infusion should be done about 14 days before embryos are transferred to the uterus to ensure a sufficient number of normal functional NK cells are present at the implantation site during embryo transfer. Failure to recognize this reality has led to the erroneous demand from IVF doctors for Reproductive Immunology Reference Laboratories to report on NK cell activity before and immediately after exposure to IVIg or IL at different concentrations. However, since already activated NK cells cannot be deactivated in the laboratory, assessing NKa suppression in this way has little clinical benefit. Even if blood is drawn 10-14 days after IL/IVIg treatment, it would take another 10-14 days to receive the results, which would be too late to be practically advantageous.

  • Antiphospholipid Antibodies:

Many women who struggle with IVF failure or recurrent pregnancy loss, as well as those with a personal or family history of autoimmune diseases like lupus erythematosus, rheumatoid arthritis, scleroderma, and dermatomyositis, often test positive for antiphospholipid antibodies (APAs). Over 30 years ago, I proposed a treatment for women with positive APA tests. This involved using a low dose of heparin to improve the success of IVF implantation and increase birth rates. Research indicated that heparin could prevent APAs from affecting the embryo’s “root system” ( the trophoblast), thus enhancing implantation. We later discovered that this therapy only benefits women whose APAs target specific phospholipids (phosphatidylethanolamine and phosphatidylserine). Nowadays, longer-acting low molecular weight heparinoids like Lovenox and Clexane have replaced heparin.

  • Antithyroid Antibodies ( thyroid peroxidase -TPO and antithyroglobulin antibodies (TGa)

Between 2% and 5% of women of the childbearing age have reduced thyroid hormone activity (hypothyroidism). Women with hypothyroidism often manifest with reproductive failure i.e., infertility, unexplained (often repeated) IVF failure, or recurrent pregnancy loss (RPL). The condition is 5-10 times more common in women than in men. In most cases hypothyroidism is caused by damage to the thyroid gland resulting from thyroid autoimmunity (Hashimoto’s disease) caused by damage done to the thyroid gland by antithyroglobulin and antimicrosomal auto-antibodies. The increased prevalence of hypothyroidism and thyroid autoimmunity (TAI) in women is likely the result of a combination of genetic factors, estrogen-related effects, and chromosome X abnormalities. This having been said, there is significantly increased incidence of thyroid antibodies in non-pregnant women with a history of infertility and recurrent pregnancy loss and thyroid antibodies can be present asymptomatically in women without them manifesting with overt clinical or endocrinologic evidence of thyroid disease. In addition, these antibodies may persist in women who have suffered from hyper- or hypothyroidism even after normalization of their thyroid function by appropriate pharmacological treatment. The manifestations of reproductive dysfunction thus seem to be linked more to the presence of thyroid autoimmunity (TAI) than to clinical existence of hypothyroidism and treatment of the latter does not routinely result in a subsequent improvement in reproductive performance. It follows that if antithyroid autoantibodies are associated with reproductive dysfunction they may serve as useful markers for predicting poor outcome in patients undergoing assisted reproductive technologies. Some years back, I reported on the fact that 47% of women who harbor thyroid autoantibodies, regardless of the absence or presence of clinical hypothyroidism, have activated uterine natural killer cells (NKa) cells and cytotoxic lymphocytes (CTL) and that such women often present with reproductive dysfunction. We demonstrated that appropriate immunotherapy with IVIG or intralipid (IL) and steroids subsequently often results in a significant improvement in reproductive performance in such cases.


Almost 50% of women with antithyroid antibodies do not have activated cytotoxic T lymphocytes (CTL) or natural killer cells (NK cells). This suggests that the antibodies themselves may not be the direct cause of reproductive dysfunction. Instead, the activation of CTL and NK cells, which occurs in about half of the cases with thyroid autoimmunity (TAI), is likely an accompanying phenomenon that damages the early “root system” (trophoblast) of the embryo during implantation.

Treating women who have both antithyroid antibodies and activated NK cells/CTL with intralipid (IL) and steroids improves their chances of successful reproduction. However, women with antithyroid antibodies who do not have activated NK cells/CTL do not require this treatment.

  • Treatment Options for Immunologic Implantation Dysfunction (IID):
  1. Intralipid (IL) Therapy: IL is a mixture of soybean lipid droplets in water, primarily used for providing nutrition. When administered intravenously, IL supplies essential fatty acids that can activate certain receptors in NK cells, reducing their cytotoxic activity and enhancing implantation. IL, combined with corticosteroids, suppresses the overproduction of pro-inflammatory cytokines by NK cells, improving reproductive outcomes. IL is cost-effective and has fewer side effects compared to other treatments like IVIg.
  2. Intravenous immunoglobulin-G (IVIg) Therapy: In the past, IVIg was used to down-regulate activated NK cells. However, concerns about viral infections and the high cost led to a decline in its use. IVIg can be effective, but IL has become a more favorable and affordable alternative.
  3. Corticosteroid Therapy: Corticosteroids, such as prednisone and dexamethasone, are commonly used in IVF treatment. They have an immunomodulatory effect and reduce TH-1 cytokine production by CTL. When combined with IL or IVIg, corticosteroids enhance the implantation process. Treatment typically starts 10-14 days before embryo transfer and continues until the 10th week of pregnancy.
  4. Heparinoid Therapy: Low molecular weight heparin (Clexane, Lovenox) can improve IVF success rates in women with antiphospholipid antibodies (APAs) and may prevent pregnancy loss in certain thrombophilias when used during treatment. It is administered subcutaneously once daily from the start of ovarian stimulation.
  5. TH-1 Cytokine Blockers (Enbrel, Humira): TH-1 cytokine blockers have limited effectiveness in the IVF setting and, in my opinion, no compelling evidence supports their use. They may have a role in treating threatened miscarriage caused by CTL/NK cell activation, but not for IVF treatment. TH-1 cytokines are needed for cellular response, during the early phase of implantation, so completely blocking them could hinder normal implantation.
  1. Baby Aspirin and IVF: Baby aspirin doesn’t offer much value in treating implantation dysfunction (IID) and may even reduce the chance of success. This is because aspirin thins the blood and increases the risk of bleeding, which can complicate procedures like egg retrieval or embryo transfer during IVF, potentially compromising its success.
  2. Leukocyte Immunization Therapy (LIT): LIT involves injecting the male partner’s lymphocytes into the mother to improve the recognition of the embryo as “self” and prevent rejection. LIT can up-regulate Treg cells and down-regulate NK cell activation, improving the balance of TH-1 and TH-2 cells in the uterus. However, the same benefits can be achieved through IL (Intralipid) therapy combined with corticosteroids. IL is more cost-effective, and the use of LIT is prohibited by law in the USA.

Types of Immunologic Implantation Dysfunction (IID) and NK Cell Activation:

  1. Autoimmune Implantation Dysfunction: Women with a personal or family history of autoimmune conditions like Rheumatoid arthritis, Lupus Erythematosus, thyroid autoimmune disease (Hashimoto’s disease and thyrotoxicosis), and endometriosis (in about one-third of cases) may experience autoimmune IID. However, autoimmune IID can also occur without any personal or family history of autoimmune diseases.Treatment for NK cell activation in IVF cases complicated by autoimmune IID involves a combination of daily oral dexamethasone from the start of ovarian stimulation until the 10th week of pregnancy, along with 20% intralipid (IL) infusion 10 days to 2 weeks before embryo transfer. With this treatment, the chance of a viable pregnancy occurring within two completed embryo transfer attempts is approximately 70% for women <40 years old who have  normal ovarian reserve.
  2. Alloimmune Implantation Dysfunction: NK cell activation occurs when the uterus is exposed to an embryo that shares certain genotypic (HLA/DQ alpha) similarities with the embryo recipient.
    • Partial DQ alpha/HLA genetic matching: Couples who share only one DQ alpha/HLA gene are considered to have a “partial match.” If NK cell activation is also present, this partial match puts the couple at a disadvantage for IVF success. However, it’s important to note that DQ alpha/HLA matching, whether partial or total, does not cause IID without associated NK cell activation. Treatment for partial DQ alpha/HLA match with NK cell activation involves IL infusion and oral prednisone as adjunct therapy. IL infusion is repeated every 2-4 weeks after pregnancy is confirmed and continued until the 24th week of gestation. In these cases, only one embryo is transferred at a time to minimize the risk of NK cell activation.
    • Total (Complete) Alloimmune Genetic Matching: A total alloimmune match occurs when the husband’s DQ alpha genotype matches both that of the partner. Although rare, this total match along with NK cell activation significantly reduces the chance of a viable pregnancy resulting in a live birth at term. In some cases, the use of a gestational surrogate may be necessary.

It should be emphasized that poor embryo quality is not always the main cause of reproductive dysfunction and that the complex interaction between embryonic cells and the lining of the uterus  plays a critical role in successful implantation. Women with personal or family histories of autoimmune disease or endometriosis and those with unexplained (often repeated) IVF failure or recurrent pregnancy loss, often have immunologic implantation dysfunction (IID as the underlying cause . For such women, it is important to understand how IID leads to reproductive failure and how selective treatment options such as intralipid (IL), corticosteroid and heparinoid therapy, can dramatically  improve reproductive outcomes. Finally, there is real hope that proper identification and management of IID can  significantly improve the chance of successful reproduction and ultimately contribute to better quality of life after birth.

_____________________________________________________

PLEASE SHARE THIS WITH OTHERS AND HELP SPREAD THE WORD!!

 

Herewith are  online links to 2  E-books recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

  1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) ; https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

 

  1. Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link ;https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

 

I invite you to visit my very recently launched “Podcast”,  “HAVE A BABY” on RUMBLE;   https://rumble.com/c/c-3304480

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com\

 

 

 

 

Scroll to Top