Ask Our Doctors

Dear Patients,

I created this forum to welcome any questions you have on the topic of infertility, IVF, conception, testing, evaluation, or any related topics. I do my best to answer all questions in less than 24 hours. I know your question is important and, in many cases, I will answer within just a few hours. Thank you for taking the time to trust me with your concern.

– Geoffrey Sher, MD

Fill in the following information and we’ll get back to you.

Hi

Name: Elizabeth O

Hello I’m pregnant and they said I was only 5 weeks and 6 days Wednesday and my hgc levels where 7,772 and they need me to repeat the blood work they said I was to early and they couldn’t hear the cmheart beat and said if I was losing the baby my numbers would drop but they didn’t they went to 13,001 in 2 days and I’m 6 weeks and 3 days now idk how to read hcg levels

Answer:

At this stage, an ultrasound should be able to diagnose a viable pregnancy,

Good luck!

Geoff Sher
_______________________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

http://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

………………………………………………………………..

 

Name: Oksana S

(I just had my friend write the below email to the info@sherinstitute.com and was then told to use this feature to connect with you. I am fluent in English but my writing skills are not up to par which is why my friend is ghost writing for me).

Dear Dr. Sher and Dr. Tortoriello –

I was referred to you by Dr. Burdette, Associate Oncology & Hematology Director at Maimonides. I have stage IIB estrogen receptive breast cancer and would very much like to determine whether I can preserve my ability to have children once I complete my cancer treatment. Dr. Burdette would like for me to start chemo treatment on March 31st and highly recommended that I need to resolve this question ASAP.

I am 51 years old, had a menstrual cycle in September 2022, realized that I probably have breast cancer then due to an inverted nipple and pain and the period basically ceased at this time.

I am in good physical shape, never had any abortions, was never on the pill or any hormonal treatments or medication for that matter, was a dancer and dance instructor for many years before emigrating to the US from Kyiv/Kiev. I am in excellent physical condition, save for the cancer (life is funny that way). I had my one and only child at the age of 43 after waiting and waiting for a “prince” that never arrived on the white horse. Old fable but widely disseminated and accepted by little girls everywhere. Spoke to several doctors after the age of 40 who all told me pregnancy was unlikely and that having a healthy child even less so. In any event, I got pregnant after the first attempt (one act of sexual intercourse), had an uneventful pregnancy and gave birth to an “extremely and remarkably healthy child” in about 20 minutes at the age of 43. I would like to have another child and realize that my set of circumstances, both age and cancer diagnosis wise don’t exactly set me up for success and yet there would never be an opportunity for a “miracle” to occur. but for cases like mine.

Dr. Burdette knows my medical history and physical indicators and felt that I should reach out to you to present my set of circumstances. Dr. Burdette would also like for me to start treatment asap which at this time is scheduled for March 31st.

Would be possible to have a consultation this week to determine what my chances, if any, are to have a child are in the future. Personally saw 2 different women have healthy children at the age of 53 and 57 so am hoping that I too can be an exception.

Finally, I am not well off or even middle class for that matter. Coupled with the fact that I was told that the Sher Clinic only works with women up until the age of 50, I recognized the need to write this email to you directly in order to determine whether you would consider speaking with me either by phone or in person this coming week.

Thank you for your consideration and have a lovely rest of your Sunday.

Best regards,
Oksana Shevchenko (written by my friend Irina Yevseenko)
718-600-2549

Answer:

Dear Oksana,

Thank you for reaching out. I fully understand your situation as it relates to breast cancer and I empathize with you. However, in my opinion your age being 51y, virtually precludes successful IVF with your own eggs. In fact the chance of successful IVF, would be less than 1% . Therefore any  discussion as it relates to your breast cancer, is moot…

I wish I had better news to impart, but alas this is the reality.

By the way, whenever you hear of a woman in her 50’s, having had an IVF baby using own eggs, the overwhelming likelihood is that she used donated eggs or embryos.

So sorry!

G-d bless!

Geoff Sher

 

________________________________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

http://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

………………………………………………………………..

 

Hi

Name: Elizabeth O

Hello I’m pregnant and they said I was only 5 weeks and 6 days Wednesday and my hgc levels where 7,772 and they need me to repeat the blood work they said I was to early and they couldn’t hear the cmheart beat and said if I was losing the baby my numbers would drop but they didn’t they went to 13,001 in 2 days and I’m 6 weeks and 3 days now idk how to read hcg levels

Answer:

I know of no medical announcement associated with the degree of emotional anticipation and anguish as that associated with a pending diagnosis/confirmation of pregnancy following infertility treatment. In fact, hardly a day goes by where I am not confronted by a patient anxiously seeking interpretation of a pregnancy test result.
Testing urine or blood for the presence of human chorionic gonadotropin (hCG) is the most effective and reliable way to confirm conception. The former, is far less expensive than the latter and is the most common method used. It is also more convenient because it can be performed in the convenience of the home setting. However, urine hCG testing for pregnancy is not nearly as reliable or as sensitive e as is blood hCG testing. Blood testing can detect implantation several days earlier than can a urine test. Modern pregnancy urine test kits can detect hCG about 16-18 days following ovulation (or 2-3 days after having missed a menstrual period), while blood tests can detect hCG, 12-13 days post-ovulation (i.e. even prior to menstruation).
The ability to detect hCG in the blood as early as possible and thereupon to track its increase, is particularly valuable in women undergoing controlled ovarian stimulation (COS) with or without intrauterine insemination (IUI) or after IVF. The earlier hCG can be detected in the blood and its concentration measured, the sooner levels can be tracked serially over time and so provide valuable information about the effectiveness of implantation, and the potential viability of the developing conceptus.
There are a few important points that should be considered when it comes to measuring interpreting blood hCG levels. These include the following:
• All modern day blood (and urine) hCG tests are highly specific in that they measure exclusively for hCG. There is in fact no cross-reactivity with other hormones such as estrogen, progesterone or LH.
• Post conception hCG levels, measured 10 days post ovulation or egg retrieval can vary widely (ranging from 5mIU/ml to above 400mIU/ml. The level will double every 48–72 hours up to the 6th week of gestation whereupon the doubling rate starts to slow down to about 96 hours. An hCG level of 13,000-290, 0000 mIU/ml is reached by the end of the 1st trimester (12 weeks) whereupon it slowly declines to approximately 26,000– 300,000 mIU/ml by full term. Below are the average hCG levels during the first trimester:
o 3 weeks LMP: 5 – 50 mIU/ml
o 4 weeks LMP: 5 – 426 mIU/ml
o 5 weeks LMP: 18 – 7,340 mIU/ml
o 6 weeks LMP: 1,080 – 56,500 mIU/ml
o 7 – 8 weeks LMP: 7, 650 – 229,000 mIU/ml
o 9 – 12 weeks LMP: 25,700 – 288,000 mIU/ml
• A single hCG blood level is not sufficient to assess the viability of an implanting embryo. Caution should be used in making too much of an initial hCG level. This is because a normal pregnancy can start with relatively low hCG blood levels. It is the rate of the rise of the blood hCG level that is relevant.
• In some cases the initially hCG level is within the normal range, but then fails to double in the ensuing 48-72hours. In some cases it might even plateau or decline, only to start doubling appropriately thereafter. When this happens, it could be due to:
o A recovering implantation, destined to develop into a clinical gestation
o A failing implantation (a chemical pregnancy)
o A multiple pregnancy which is spontaneously reducing (i.e., one or more of the concepti is being lost) or,
o An ectopic pregnancy which will either absorb spontaneously (a chemical-tubal gestation), or evolve into a full blown tubal pregnancy continue and declare itself through characteristic symptoms and signs of an intraperitoneal bleed.
• The blood hCG test needs to be repeated at least once after 48h and in some cases it will need to be repeated one or more times (at 48h intervals) thereafter, to confirm that implantation is progressing normally.
• Ultimately the diagnosis of a viable pregnancy requires confirmation of the presence of an intrauterine gestational sac by ultrasound examination. The earliest that this can be achieved is when the beta hCG level exceeds 1,000mIU/ml (i.e., around 5-6 weeks).
• Most physicians prefer to defer the performance of a routine US diagnosis of pregnancy until closer to the 7th week. This is because by that time, cardiac activity should be clearly detectable, allowing for more reliable assessment of pregnancy viability.
• There are cases where the blood beta hCG level is extraordinarily high or the rate of rise is well above the normal doubling rate. The commonest explanation is that more than one pregnancy has implanted. However in some cases it can point to a molar pregnancy
• Finally, there on rare occasions, conditions unrelated to pregnancy can result in detectable hCG levels in blood and urine. They include ovarian tumors that produce hCG, such as certain types of cystic teratomas (dermoid cysts) and some ovarian cancers such as dysgerminomas.

 

_____________________________________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

http://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

………………………………………………………………..

 

Name: Lilly G

I am 36 years old and only freezing eggs. My AMH was just over 1 ng about a year ago, AFC usually 6-8. I have a long history of stage 4 endometriosis.

1. Could a disproportionately high estrogen to follicle ratio have a negative impact on egg quality? Estrogen is usually 800-1000 pg by 4 of stimulation (450 gonal f) and almost 3,000 pg by trigger, despite only having 3-6 follicles at 16+mm and only 3-6 mature eggs retrieved.

2. I have read with great interest your findings on LH having a negative impact on egg quality. May I ask your opinion on whether this is still a concern if I always have low-ish testosterone levels? (approx 0.8 nmol total testosterone, 5.3 pmol free testosterone).

Thank you for any insight.

Answer:

I do not believe tyhat an E2 of 3000pg/ml at peak, is potentially harmful. This having been said, the protocol used for ovarian stimulation is important, but without much more information in this regard, I cannot comment authoritatively.

Av separate issue is the effect of endometriosis on IVF outcome (see below).

Geoff Sher

_______________________________________________________________________________________

When women with infertility due to endometriosis seek treatment, they are all too often advised to first try ovarian stimulation (ovulation Induction) with intrauterine insemination (IUI) ………as if to say that this would be just as likely to result in a baby as would in vitro fertilization (IVF). Nothing could be further from reality It is time to set the record straight. And hence this communication!

Bear in mind that the cost of treatment comprises both financial and emotional components and that it is the cost of having a baby rather than cost of a procedure. Then consider the fact that regardless of her age or the severity of the condition, women with infertility due to endometriosis are several fold more likely to have a baby per treatment cycle of IVF than with IUI. It follows that there is a distinct advantage in doing IVF first, rather than as a last resort.

So then, why is it that ovulation induction with or without IUI is routinely offered proposed preferentially to women with mild to moderately severe endometriosis? Could it in part be due to the fact that most practicing doctors do not provide IVF services but are indeed remunerated for ovarian stimulation and IUI services and are thus economically incentivized to offer IUI as a first line approach? Or is because of the often erroneous belief that the use of fertility drugs will in all cases induce the release (ovulation) of multiple eggs at a time and thereby increase the chance of a pregnancy. The truth however is that while normally ovulating women (the majority of women who have mild to moderately severe endometriosis) respond to ovarian stimulation with fertility drugs by forming multiple follicles, they rarely ovulate > 1 (or at most 2) egg at a time. This is because such women usually only develop a single dominant follicle which upon ovulating leaves the others intact. This is the reason why normally ovulating women who undergo ovulation induction usually will not experience improved pregnancy potential, nor will they have a marked increase in multiple pregnancies. Conversely, non-ovulating women (as well as those with dysfunctional ovulation) who undergo ovulation induction, almost always develop multiple large follicles that tend to ovulate in unison. This increases the potential to conceive along with an increased risk multiple pregnancies.

 

So let me take a stab at explaining why IVF is more successful than IUI or surgical correction in the treatment of endometriosis-related infertility:

  1. The toxic pelvic factor: Endometriosis is a condition where the lining of the uterus (the endometrium) grows outside the uterus. While this process begins early in the reproductive life of a woman, with notable exceptions, it only becomes manifest in the 2ndhalf of her reproductive life. After some time, these deposits bleed and when the blood absorbs it leaves a visible pigment that can be identified upon surgical exposure of the pelvis. Such endometriotic deposits invariably produce and release toxins” into the pelvic secretions that coat the surface of the membrane (the peritoneum) that envelops all abdominal and pelvic organs, including the uterus, tubes and ovaries. These toxins are referred to as “the peritoneal factor”. Following ovulation, the egg(s) must pass from the ovary (ies), through these toxic secretions to reach the sperm lying in wait in the outer part the fallopian tube (s) tube(s) where, the sperm lie in waiting. In the process of going from the ovary(ies) to the Fallopian tube(s) these eggs become exposed to the “peritoneal toxins” which alter s the envelopment of the egg (i.e. zona pellucida) making it much less receptive to being fertilized by sperm. As a consequence, if they are chromosomally normal such eggs are rendered much less likely to be successfully fertilized. Since almost all women with endometriosis have this problem, it is not difficult to understand why they are far less likely to conceive following ovulation (whether natural or induced through ovulation induction). This “toxic peritoneal factor impacts on eggs that are ovulated whether spontaneously (as in natural cycles) or following the use of fertility drugs and serves to explain why the chance of pregnancy is so significantly reduced in normally ovulating women with endometriosis.
  2. The Immunologic Factor: About one third of women who have endometriosis will also have an immunologic implantation dysfunction (IID) linked to activation of uterine natural killer cells (NKa).  This will require selective immunotherapy with Intralipid infusions, and/or heparinoids (e.g. Clexane/Lovenox) that is much more effectively implemented in combination with IVF.
  3. Surgical treatment of mild to moderate endometriosis does not usually improve pregnancy potential:. The reason is that endometriosis can be considered to be a “work in progress”. New lesions are constantly developing. So it is that for every endometriotic seen there are usually many non-pigmented deposits that are in the process of evolving but are not yet visible to the naked eye and such evolving (non-visible) lesions can also release the same “toxins that compromise fertilization. Accordingly, even after surgical removal of all visible lesions the invisible ones continue to release “toxins” and retain the ability to compromise natural fertilization. It also explains why surgery to remove endometriotic deposits in women with mild to moderate endometriosis usually will fail to significantly improve pregnancy generating potential. In contrast, IVF, by removing eggs from the ovaries prior to ovulation, fertilizing these outside of the body and then transferring the resulting embryo(s) to the uterus, bypasses the toxic pelvic environment and is therefore is the treatment of choice in cases of endometriosis-related infertility.
  4. Ovarian Endometriomas: Women, who have advanced endometriosis, often have endometriotic ovarian cysts, known as endometriomas. These cysts contain decomposed menstrual blood that looks like melted chocolate…hence the name “chocolate cysts”. These space occupying lesions can activate ovarian connective tissue (stroma or theca) resulting in an overproduction of male hormones (especially testosterone). An excess of ovarian testosterone can severely compromise follicle and egg development in the affected ovary. Thus there are two reasons for treating endometriomas. The first is to alleviate symptoms and the second is to optimize egg and embryo quality. Conventional treatment of endometriomas involves surgical drainage of the cyst contents with subsequent removal of the cyst wall (usually by laparoscopy), increasing the risk of surgical complications. We recently reported on a new, effective and safe outpatient approach to treating endometriomas in women planning to undergo IVF. We termed the treatment ovarian Sclerotherapy.  The process involves; needle aspiration of the “chocolate colored liquid content of the endometriotic cyst, followed by the injection of 5% tetracycline hydrochloride into the cyst cavity. Such treatment will, more than 75% of the time result in disappearance of the lesion within 6-8 weeks. Ovarian sclerotherapy can be performed under local anesthesia or under conscious sedation. It is a safe and effective alternative to surgery for definitive treatment of recurrent ovarian endometriomas in a select group of patients planning to undergo IVF

 

 I am not suggesting that all women with infertility-related endometriosis should automatically resort to IVF. Quite to the contrary…. In spite of having reduced fertility potential, many women with mild to moderate endometriosis can and do go on to conceive on their own (without treatment). It is just that the chance of this happening is so is much lower than normal.

 

IN SUMMARY: For young ovulating women (< 35 years of age ) with endometriosis, who have normal reproductive anatomy and have fertile male partners, expectant treatment is often preferable to IUI or IVF. However, for older women, women who (regardless of their age) have any additional factor (e.g. pelvic adhesions, ovarian endometriomas, male infertility, IID or diminished ovarian reserve-DOR) IVF should be the primary treatment of choice.

 

I strongly recommend that you visit www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select.  Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

  • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
  • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
  • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
  • The Fundamental Requirements For Achieving Optimal IVF Success
  • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
  • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF:
  • The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
  • Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
  • Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
  • Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
  • Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management: (Case Report)
  • Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
  • Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
  • Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
  • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas
  • Should IVF Treatment Cycles be provided uninterrupted or be Conducted in 7-12 Pre-scheduled “Batches” per Year
  • A personalized, stepwise approach to IVF
  • How Many Embryos should be transferred: A Critical Decision in IVF?
  • Endometriosis and Immunologic Implantation Dysfunction (IID) and IVF
  • Endometriosis and Infertility: Why IVF Rather than IUI or Surgery Should be the Treatment of Choice.
  • Endometriosis and Infertility: The Influence of Age and Severity on Treatment Options
  • Early -Endometriosis-related Infertility: Ovulation Induction (with or without Intrauterine Insemination) and Reproductive Surgery Versus IVF
  • Treating Ovarian Endometriomas with Sclerotherapy.
  • Effect of Advanced Endometriosis with Endometriotic cysts (Endometriomas) on IVF Outcome & Treatment Options.
  • Deciding Between Intrauterine Insemination (IUI) and In Vitro Fertilization (IVF).
  • Intrauterine Insemination (IUI): Who Needs it & who Does Not: Pro’s &
  • Induction of Ovulation with Clomiphene Citrate: Mode of Action, Indications, Benefits, Limitations and Contraindications for its use
  • Clomiphene Induction of Ovulation: Its Use and Misuse!

 

 

 

______________________________________________________

ADDENDUM: PLEASE READ!!

INTRODUCING SHER FERTILITY SOLUTIONS (SFS)

Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

 

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or,  enroll online on then home-page of my website (www.SherIVF.com). 

 

___________________________________________________________________

 

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

http://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

………………………………………………………………..

 

 

Name: Mary T

Hi Dr Sher,

I recently found out I’m pregnant with a chromosomally normal embryo and have had two Beta HCG tests, which have shown my levels are increasing as expected:

First Beta HCG: 12 days past 6 day transfer = >700
Second Beta HCG: 14 days past 6 day transfer = >1800

I now need to wait another 2 weeks to have my viability scan and I’m nervous about the possibility that despite these good HCG results the pregnancy won’t be progressing as it should be.

What is the general likelihood of this being a clinical pregnancy considering my HCG results above?

Answer:

Very likely this will be a viable pregnancy (probably—80%+).

Good luck!

Geoffrey Sher

_________________________________________________________________

Each and every patient/couple, in undergoing IVF makes huge emotional, physical and (in most cases) also financial investment. The fact that receiving the result of the blood human chorionic gonadotropin (hCG) pregnancy test represents the first decisive hurdle that must be confronted makes this a very big deal The few days after the embryo transfer, waiting for this first outcome report is usually anxiety ridden and highly stressful.  It is thus imperative that the IVF physician and his/her staff deal delicately with the transfer of this critical information. Dropping the ball at this time would be unconscionable. The physician and staff must make themselves accessible to the patient/couple and effect the conveyance of results promptly, professionally and with sensitivity.

At least 2 beta hCG blood tests are done (2-4 days apart). The reporting of pregnancy test results is invariably best deferred until after the 2nd blood test results are in. This is because an initial equivocal (or even negative) result can correct itself and also, a strongly positive result can become negative by the second test. Sometimes (albeit rarely) a normal embryo will be slow to implant and the hCG level can be <5IU/ml. It can even be undetectable at first. Thus, regardless of the initial blood hCG level, this test should be repeated two days later in order to see if there has been an appreciable rise in hCG since the first test. A significant rise (about a doubling of the initial value) usually suggests that an embryo is implanting and is a prognostic indication of a possible pregnancy. Thus by waiting to report the results until the 2nd test result is in, will in most cases avoid conveying false hope and/or disappointment.

It is important to bear in mind that beta hCG blood levels do not double every 2 days throughout pregnancy. In fact once the levels start to rise above 4,000U they tend to increase more slowly.

Since (with the notable exceptions of IVF using an egg donor and the transfer of genetically (CGH) tested “competent” embryos, the likelihood of a successful IVF outcome will (in younger women) at best be 50-55% (at best), it is important to counsel patients in advance of the need to have rational expectations. It is equally important to inform patients exactly how, when and by whom they will receive the news and thereupon, in the event of a “negative outcome” when and by whom they will be counseled.

As soon as an embryo begins to implant and its root system (trophoblast) comes into contact with endometrial tissue, the embryo starts to release the pregnancy hormone, hCG in to the woman’s blood stream. About 12 days after egg retrieval, 9 days after a day 3 embryo transfer and 7 days after a blastocyst transfer the woman should have a quantitative beta hCG blood pregnancy test performed. By that time almost all hCG injected to prepare the developing eggs for egg retrieval, there should be minimal hCG left in the woman’s blood stream. Thus the detection of >5 IU of hCG per ml of blood tested is an indication that the embryo tried to implant.

Since with Third party-IVF (i.e. Ovum donation, gestational surrogacy, embryo adoption or frozen embryo transfers-FET) no hCG “trigger is administered, the detection of any amount of hCG in the blood is regarded as significant.

What is Considered Slow Rising hCG Levels?

Often times an initial rise in hCG (between the 1st and 2nd test) will be slow (failure to double every 48 hours). When this happens, a 3rd and sometimes even a 4th hCG test should be done at 2 day intervals. A failure to double on the 3rd and/or 4th test is a poor prognostic sign. It usually indicates a failed or “dysfunctional implantation but in some cases a progressively slow rising hCG level might point to a tubal (ectopic pregnancy. Diagnosis requires additional serial blood hCG testing, ultrasound examinations and clinical follow-up to detect any symptoms or signs of an ectopic pregnancy.

In some cases the 1st beta hCG level starts high (well over 20IU/ml) and then drops with the 2nd test, only to start doubling once again thereafter. This sometimes suggests that there were initially more than one embryos implanting and that one of these subsequently succumbed and one survived to continue a healthy implantation.

It is customary for the IVF clinic staff to call the patient/couple and the referring physician with the results of the hCG pregnancy test. Often times, the IVF physician or nurse‑coordinator will work through the referring physician to arrange for the all pregnancy tests. . If the patient/ couple wishes to make their own arrangements, the program should give them detailed instructions about the necessary tests.

If the two blood pregnancy tests indicate that one or more embryos are implanting, some programs advocate daily injections of progesterone or the use of vaginal hormone suppositories for several weeks to support the implanting embryo(s). Others, including our own, give hCG injections three times a week for several weeks until the pregnancy can be defined by ultrasound. Some IVF programs do not prescribe any hormones at all after the transfer.

Patients with hCG levels that show the appropriate doubling 2 day doubling following FET or third‑party parenting through IVF surrogacy or ovum donation will receive estradiol and progesterone injections, often in conjunction with vaginal hormone suppositories, for 10 weeks following the diagnosis of implantation by blood pregnancy testing.

Although a positive Beta hCG blood pregnancy test indicates the possibility of a conception, pregnancy cannot be confirmed until it can be defined by ultrasound. Until then it is referred to as a “chemical pregnancy). Only once ultrasound examination can confirm the existence of a gestational sac, clinical examination can establish the presence of a viable pregnancy or following abortion, products of conception can be recognized, is it referred to as a clinical intrauterine pregnancy. A strongly positive beta hCG blood level in association with an inability beyond 5 weeks gestation to detect a gestational sac inside the uterus by ultrasound examination is suggestive of an ectopic (tubal) pregnancy The chance of miscarriage progressively decreases from the point of diagnosing a viable clinical pregnancy (a conceptus that has a regular heart beat of between 110 and 180 beats per minute). From this point onwards the risk of miscarriage is usually <15% in women under 39 years of age and less than 35% in women in their early forties.

Dealing with an IVF success is easy…. Everyone feels elated and vindicated. It is dealing with  unsuccessful cases that offer the real challenge. In this regard, nothing is more important than establishing rational expectations from the get go. In some cases (fortunately rarely), the patient/couple will crack under the emotional pressure and will need referral for counseling and in some cases psychiatric therapy.

I always counsel my patients that optimal care does not necessarily equate with an optimal outcome. There are too many variables that are outside of our control…especially the “divine” one. Having been involved in this field for about 30 years, it is my fervent belief that when it comes to IVF, the adage…”man proposes while G-d disposes is always applicable!

________________________________________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

  1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

http://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

        2. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

………………………………………………………………..

 

Name: Mary P

Dr. Sher,

We got the following PGT tested embryos from our first round of IVF at 33: two 4aa, one 3aa, one 3ab, two 5bb (six total genetic normals out of 10 that made it to blast). One of the 5aa came back inconclusive. We will be transferring to an experienced surrogate after four losses.

1. Would you recommend retesting the inconclusive 5aa?
2. Should I do another round to bank embryos? We would like two children.

Thank you!

Answer:

I would not test the “inconclusive” blastocyst. In my opinion, 2ndary testing is too traumatic on trhe embryo. I would also not do another ER. You had a good result and all things being equal (e.g., the absence of an implantation dysfunction) you should be able to ave at least one baby out of the batch by FET (s)…over time, of course.

Geoff Sher

__________________________________________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

http://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

………………………………………………………………..

 

Name: lisa L

HI
I am 41 y/o who recently went through IVF. When I began my menstrual cycle, I did a baseline US which showed 13 follicle in my left and 8 follicles in my right. I started my IVF cycle and was on was Letrozole 10mg for 5 days ,follistim 200 units for 8 days,Menopur 75mg for 8 days ,Garnelix 250mg for 3 days then I was asked to trigger with Pregnyl and Lupron. At my last US(Trigger day ) I had 5 follicles on my left biggest 18.5 and smallest 10mm while on my Right I had 5 follicles as well biggest 26.5mm and smallest 12.5mm.

Now the interesting thing is on trigger day my EStradiol was only 229pg/ml(which per my research showed only 1 egg was mature) BUT the IVF doctor went ahead and retrieved 8 eggs then told me later that 7 of 8 eggs retrieved were GV thus could not be fertilized.

Please explain what caused 90% of my eggs to be immature at the GV stage ??? I am very upset and I suspect my protocol was not right for me.

Answer:

Very respectfully, in my opinion, the protocol used for ovarian stimulation might not have been optimal. Your low E2 level with so many follicles, suggests possible3 “premature luteinization. (see below).

Geoff Sher

_______________________________________________________________________

1. IMPORTANCE OF INDIVIDUALIZING THE PROTOCOL FOR OVARIAN STIMULATION.

The importance of the IVF stimulation protocol on egg/embryo quality cannot be overstated. This factor seems often to be overlooked or discounted by t IVF practitioners who use a “one-size-fits-all” approach to ovarian stimulation. My experience is that the use of individualized/customized COS protocols can greatly improve IVF outcome. While no one can influence underlying genetics or turn back the clock on a woman’s age, any competent IVF specialist should be able to tailor the protocol for COS to meet the individual needs of the patient.

Gonadotropins (LH and FSH), whether produced by the pituitary gland or administered by way of fertility drugs, have different “targeted” sites of action in the ovary. FSH targets cells that line the inner wall of the follicle (granulosa cells) and also form the cumulus cells that bind the egg to the inner surface of the follicle. Granulosa cells are responsible for estrogen production.

LH, on the other hand, targets the ovarian connective tissue (stroma/theca) that surrounds ovarian follicles resulting in the production of male hormones such as testosterone (predominantly), androstenedione and DHEA. These androgens are then transported to the granulosa cells of the adjacent follicles in a “bucket brigade fashion”. There FSH converts testosterone to estradiol, causing granulosa cells to multiply (proliferate) and produce estradiol, follicles to  grows and eggs to develop (ovogenesis) It follows that  ovarian androgens (mainly testosterone) is absolutely indispensable to follicle/ egg growth and development.

However, the emphasis is on a “normal” amount of testosterone. Over-exposure of the follicle to testosterone can in my opinion,  compromise egg development and lead to an increased likelihood of chromosomal irregularities (aneuploid) following LH/hCG-induced egg maturational division (meiosis) and compromise embryo “competency/quality.

Ovarian androgens can also reach the uterine lining where they sometimes will compromise estrogen receptor -induced endometrial growth and development.

A significant percentage of  older women and those who have diminished ovarian reserve (DOR) have increased LH activity is increased. Such women either over-produce LH and/or the LH produced is far more biologically active. Chronically increased LH activity leads to overgrowth of ovarian connective tissue (stroma/theca). This condition, which is often referred to as Stromal Hyperplasia or hyperthecosis can result in  excessive ovarian androgen/testosterone production and poorer egg-embryo quality/competency, Similarly, women with polycystic ovarian syndrome (PCOS), also characteristically have Stromal hyperplasia/hyperthecosis due to chronically increased LH activity. Thus they too often manifest with increased ovarian androgen production. It is therefore not surprising that “poor egg/embryo quality” is often also a feature of PCOS.

In my opinion, the over-administration of LH-containing menotropins such as Menopur, [which is comprised of roughly equal amount of FSH and   hCG ,which acts similar to LH)], to older women, women with DOR and those who have PCOS can also lead to reduced egg/embryo competency . Similarly, drugs such as clomiphene or Letrozole that cause the pituitary gland to release excessive amounts of LH, are also potentially harmful to egg development and in my opinion, are best omitted from IVF COS protocols. This is especially the case when it comes to older women and those with DOR, who in my opinion should preferably be stimulated using FSH-dominant products such as Follistim, Puregon, Fostimon and Gonal-F. 

Gonadotropin releasing hormone agonists (GnRHa): GnRHa such as Lupron, Buserelin, Superfact, Gonopeptyl etc. are often used to launch ovarian stimulation cycles. They act by causing an initial outpouring followed by a depletion of pituitary gonadotropins. This results in LH levels falling to low concentrations, within 4-7 days, thereby establishing a relatively “LH-free environment”. When GnRHa are administered for about 7 days prior to initiating gonadotropin stimulation (“long” pituitary down-regulation”), the LH depletion that will exist when COS is initiated, will usually be protective of subsequent egg development. In contrast, when the GnRHa administration commences along with the initiation of gonadotropin therapy, there will be a resultant immediate surge in the release of pituitary LH with  the potential to increase ovarian testosterone to egg-compromising levels , from the outset of COS. This, in my opinion could be particularly harmful when undertaken in older women and those who have DOR.

GnRH-antagonists such as Ganirelix, Cetrotide and Orgalutron, on the other hand, act very rapidly (within hours) to block pituitary LH release. The purpose in using GnRH antagonists is to prevent the release of LH during COS. In contrast, the LH-lowering effect of GnRH agonists develops over a number of days.

GnRH antagonists are traditionally given, starting after  5th -7th day of gonadotropin stimulation. However, when this is done in older women and those (regardless of age) who have DOR, LH-suppression might be reached too late to prevent the deleterious effect of excessive ovarian androgen production on egg development in the early stage of ovarian stimulation. This is why, it is my preference to administer GnRH-antagonists, starting at the initiation of gonadotropin administration.

Preferred Protocols for Controlled Ovarian Stimulation (COS):

  • Long GnRH Agonist Protocols: The most prescribed protocol for agonist/gonadotropin administration is the so-called “long protocol”. An agonist (usually, Lupron) is given either in a natural cycle, starting 5-7 days prior to menstruation or is overlapped with the BCP for two days whereupon the latter is stopped and the Lupron, continued until menstruation ensues. The agonist precipitates a rapid rise in FSH and LH level, which is rapidly followed by a precipitous decline in the blood level of both, to near zero. This is followed by uterine withdrawal bleeding (menstruation) within 5-7 days of starting the agonist treatment, whereupon gonadotropin treatment is initiated (preferably within 7-10 days of the onset of menses) while daily Lupron injections continue, to ensure a relatively “low LH- environment”. Gonadotropin administration continues until the hCG trigger.
  • Short (“Flare”) GnRH-agonist (GnRHa) Protocol: Another GnRHa usage for COS is the so called “(micro) flare protocol”. This involves initiating gonadotropin therapy commensurate with initiation of gonadotropin administration. The supposed objective is to deliberately allow Lupron to elicit an initial surge (“flare”) in pituitary FSH release in order to augment FSH administration by increased FSH production. Unfortunately, this “springboard effect” constitutes “a double-edged sword”. While it indeed increases the release of FSH, it at the same time causes a surge in LH release. The latter can evoke excessive ovarian stromal/thecal androgen production which could potentially compromise egg quality, especially when it comes to older women and women with DOR. I am of the opinion that by evoking an exaggerated ovarian androgen response, such “(micro) flare protocols” can harm egg/embryo quality and reduce IVF success rates, especially when it comes to COS in older women, and in women with diminished ovarian reserve. Accordingly, I do not prescribe such protocols to my IVF patients
  • Long-Agonist/Antagonist Conversion Protocol (A/ACP):With a few (notable) exceptions I preferentially advocate this protocol for many of my patients. With the A/ACP, as with the long protocol (see above) the woman again prepares to launch her stimulation cycle by taking a BCP for at least ten days before overlapping with an agonist such as Lupron. However, when about 5-7 days later her menstruation starts, she supplants the agonist with a with 250 mcg) of an antagonist (e.g. Ganirelix, Orgalutron or Cetrotide). Within a few days of this switch-over, gonadotropin stimulation is commenced. Both the antagonist and the gonadotropins are then continued until the hCG trigger. The purpose in switching from agonist to antagonist is to intentionally allow only a very small amount of the woman’s own pituitary LH to enter her blood and reach her ovaries, while at the same time preventing a large amount of LH from reaching her ovaries. This is because while a small amount of LH is essential to promote and optimize FSH-induced follicular growth and egg maturation, a large concentration of LH can trigger over-production of ovarian stromal testosterone, with an adverse effect of follicle/egg/embryo quality. Moreover, since testosterone also down-regulates estrogen receptors in the endometrium, an excess of testosterone can also have an adverse effect on endometrial growth. Also, since agonists might suppress some ovarian response to the gonadotropin stimulation, antagonists do not do so. It is for this reason that the A/ACP is so well suited to older women and those with some degree of diminished ovarian reserve.
  • Agonist/antagonist conversion protocol with estrogen priming:Patients start their treatment cycle on a combined (monophasic) birth control pill-BCP (e.g., Marvelon, Desogen, Orthonovum 135; Low-Estrin…etc.)  for at least 8-10 days (depending on individual circumstances), before commencing controlled ovarian stimulation for IVF. With this approach, a GnRH agonist (e.g. Lupron/Superfact/Buserelin/Decapeptyl etc.) is continued until menstruation ensues (usually 5-7 days after commencement of the GnRH-agonist). At this point, the GnRH-agonist is SUPPLANTED with 250mcg GnRH antagonist (e.g. Ganirelix/Cetrotide, Orgalutron) and daily estradiol(E2) “priming” commences using either E2 skin-patches or intramuscular estradiol valerate (Delestrogen) injections, twice weekly while continuing the administration of the GnRH antagonist. Seven (7) days after commencing the E2 skin patches or intramuscular Delestrogen, daily injections of recombinant FSH-(e.g., Follistim/Gonal-F/Puregon)  + menotropin (e.g., Menopur)  therapy begins.. This is continued at a modified dosage, along with E2 patches or Delestrogen injections) until the “hCG trigger”. The egg retrieval is performed 36 hours later.

There are a few potential drawback to the use of the A/ACP. We have learned that prolonged use of a GnRH antagonist throughout the ovarian stimulation process can compromise the predictive value of serial plasma E2 measurements to evaluate follicle growth and development. It appears that when the antagonist is given throughout stimulation, the blood E2 levels tend to be significantly lower than when the agonist alone is used or where antagonist treatment is only commenced 5-7 days into the ovarian stimulation process. The reason for this is presently unclear. Accordingly, when the A/ACP is employed, we rely more on follicle size monitoring than on serial blood E2 trends to assess progress.

Also, younger women (under 30 years) and women with absent, irregular or dysfunctional ovulation, and those with polycystic ovarian syndrome are at risk of developing life-threatening Severe Ovarian Hyperstimulation Syndrome (OHSS). The prediction of this condition requires daily access to accurate blood E2 levels. Accordingly, we currently tend to refrain from prescribing the A/ACP in such cases, preferring instead use the “standard long-protocol” approach.

  • Short-GnRH antagonist protocols:The use of GnRH antagonists as currently prescribed in ovarian stimulation cycles (i.e. the administration of 250mcg daily starting on the 6th or 7th day of stimulation with gonadotropins) may be problematic, especially in women over 39 yrs., women with diminished ovarian reserve (i.e. “poor responders” to gonadotropins), and women with PCOS. Such women tend to have higher levels of LH to start with and as such the initiation of LH suppression with GnRH antagonists so late in the cycle (usually on day 6-7) of stimulation fails to suppress LH early enough to avoid compromising egg development. This can adversely influence egg/embryo quality and endometrial development. As is the case with the “microflare” approach (see above) the use of GnRH antagonist protocols in younger women who have normal ovarian reserve, is acceptable. Again, for reasons of caution, and because I see no benefit in doing so, I personally never prescribe this approach for my patients. Presumably, the reason for the suggested mid-follicular initiation of high dose GnRH antagonist is to prevent the occurrence of the so called “premature LH surge”, which is known to be associated with “follicular exhaustion” and poor egg/embryo quality. However the term “premature LH surge” is a misnomer and the concept of this being a “terminal event” or an isolated insult is erroneous. In fact, the event is the culmination (end point) of the progressive escalation in LH (“a staircase effect”) which results in increasing ovarian stromal activation with commensurate growing androgen production. Trying to improve ovarian response and protect against follicular exhaustion by administering GnRH antagonists during the final few days of ovarian stimulation is like trying to prevent a shipwreck by removing the tip of an iceberg.
  • Short-GnRH-agonist (“micro-flare”) protocols:Another approach to COH is by way of so-called “microflare protocols”. This involves initiating gonadotropin therapy simultaneously with the administration of GnRH agonist. The intent is to deliberately allow Lupron to affect an initial surge (“flare”) in pituitary FSH release to augment ovarian response to the gonadotropin medication. Unfortunately, this approach represents “a double-edged sword” as the resulting increased release of FSH is likely to be accompanied by a concomitant (excessive) rise in LH levels that could evoke excessive production of male hormone by the ovarian stroma. The latter in turn could potentially compromise egg quality, especially in women over 39 years of age, women with diminished ovarian reserve, and in women with polycystic ovarian syndrome (PCOS) – all of whose ovaries have increased sensitivity to LH. In this way, “microflare protocols” can potentially hinder egg/embryo development and reduce IVF success rates. While microflare protocols usually are not harmful in younger women and those with normal ovarian reserve, I personally avoid this approach altogether for safety’s sake. The follicles/eggs of women on GnRH-agonist “micro-flare protocols” can be exposed to exaggerated agonist-induced LH release, (the “flare effect”) while the follicles/eggs of women, who receive GnRH antagonists starting 6-8 days following the initiation of stimulation with gonadotropins can likewise be exposed to pituitary LH-induced ovarian male hormones (especially testosterone). While this is not necessarily problematic in younger women and those with adequate ovarian reserve (“normal responders”) it could be decidedly prejudicial in “poor responders” and older women where there is increased follicle and egg vulnerability to high local male hormone levels.
  • The “Trigger Shot”- A Critical Decision:The egg goes through maturational division (meiosis) during the 36-hour period that precedes ovulation or retrieval. The efficiency of this process will determine the outcome of reproduction. It follows that when it comes to ovulation induction, aside from selecting a suitable protocol for COS one of the most important decisions the clinician has to make involves choosing and implementing with logic and precision, the “trigger shot” by which to facilitate meiosis.
    • Urinary versus recombinant hCG:Until quite recently, the standard method used to initiate the “trigger shot” was through the administration of 10,000 units of hCGu. More recently, a recombinant form of hCGr (Ovidrel) was introduced and marketed in 250 mcg doses. But clinical experience strongly suggests that 250 mcg of Ovidrel is most likely not equivalent in biological potency to 10,000 units of hCG. It probably at best only has 60%of the potency of a 10,000U dose of hCGu and as such might not be sufficient to fully promote meiosis, especially in cases where the woman has numerous follicles. For this reason, I firmly believe that when hCGr is selected as the “trigger shot” the dosage should be doubled to 500 mcg, at which dosage it will probably have an equivalent effect on promoting meiosis as would 10,000 units of hCGu.
    • The dosage of hCG used: Some clinicians, when faced with a risk of OHSS developing will deliberately elect to reduce the dosage of hCG administered as a trigger in the hope that by doing so, the risk of developing critical OHSS will be lowered. It is my opinion that such an approach is not optimal because a low dose of hCG (e.g., 5000 units hCGu or 25omcg hCGr) is likely inadequate to optimize the efficiency of meiosis, particularly when it comes to cases such as this where there are numerous follicles. In my opinion a far better approach is to use a method that I first described in 1989, known as “prolonged coasting”
    • Use of hCG versus a GnRHa(e.g., Lupron/Buserelin/Superfact) as the trigger shot: It has been suggested that the use of an “agonist ( Lupron) trigger” in women at risk of developing severe ovarian hyperstimulation syndrome (OHSS) could potentially reduce the risk of the condition becoming critical and thereby placing the woman at risk of developing life-endangering complications. It is for this reason that many RE’s prefer to trigger meiosis in this way (using an agonist-Lupron) rather than through the use of hCG. The agonist promptly causes the woman’s pituitary gland to expunge a large amount of LH over a short period of time and it is this LH “surge” that triggers meiosis. The problem with this approach, in my opinion, is that it is hard to predict how much LH will be released in by the pituitary gland of a given patient receiving an agonist trigger shot, especially if the woman was down-regulated using an agonist, or in cases where an antagonist was used to block pituitary LH release. For this reason, I personally prefer to use hCGu for the trigger, even in cases of ovarian hyperstimulation, with one important proviso…that she underwent “prolonged coasting” in order to reduce the risk of critical OHSS prior to the 10,000 unit hCGu “trigger”.
    • Combined use of hCG +GnRHa; This approach is preferable to the use of a GnRHa, alone. However, in my opinion is inferior to the appropriate and correct use of hCG, alone.
    • The timing of the trigger shot to initiate meiosis:This should coincide with the majority of ovarian follicles being >15 mm in mean diameter with several follicles having reached 18-22 mm. Follicles of larger than 22 mm will usually harbor overdeveloped eggs which in turn will usually fail to produce good quality eggs. Conversely, follicles less than 15 mm will usually harbor underdeveloped eggs that are more likely to be aneuploid and incompetent following the “trigger”.

Severe Ovarian Hyperstimulation Syndrome (OHSS) and prolonged Coasting”

OHSS is a life-endangering condition that usually occurs in women undergoing COS where the blood E2 level rises to above 4,000pg/ml. The risk escalates to greater than 80% in cases where the E2 level rises above 6,000pg/ml. It rarely occurs in normally ovulating women or older (>39Y) women and is more commonly encountered in:

  • Young women (under 30y) who have a high ovarian reserve(based upon basal FSH and AMH.
  • Women with polycystic Ovarian Syndrome (PCOS)
  • Non-PCOS women who do not ovulate spontaneously

The treating physician should be alerted to the possibility of hyperstimulation when encountering a woman who develops >25 ovarian follicles of 14mm-16mm in mean diameter, in association with a blood E2 level of above 2,5000pg/ml prior to the hCG “trigger”.

OHSS is a self-limiting condition. Its development is linked to the effect of hCG and thus does not occur until the “hCG trigger” is administered. In fact, there is virtually no risk of OHSS until the hCG “trigger” is administered.

Prolonged Coasting” is a procedure I introduced in 1991. It involves abruptly stopping gonadotropin therapy while continuing to administer the GnRH agonist (e.g. Lupron, Buserelin) deferring the hCG “trigger” until the woman is out of risk (as evidenced by a fall in plasma estradiol level to below 2,500pg/ml).

It is important that “prolonged coasting” be initiated as soon as two or more follicles have attained a greater diameter than 18mm with at least 50% of the remaining follicles having attained 14-16mm. To start the process of “prolonged coasting” any earlier or any later, while it would still protect against the development of OHSS, would almost certainly result in compromised egg and embryo quality with ultimate failure of the IVF cycle. Simply stated, the precise timing of initiating the process is critical. Proper implementation of PC will almost always prevent OHSS without seriously compromising egg/embryo quality.

Use of the Birth Control Pill (BCP) to launch IVF-COS.

In natural (unstimulated) as well as in cycles stimulated with fertility drugs, the ability of follicles to properly respond to FSH stimulation is dependent on their having developed FSH-responsive receptors. Pre-antral follicles (PAF) do not have such primed FSH receptors and thus cannot respond properly to FSH stimulation with gonadotropins. The acquisition of FSH receptor responsivity requires that the pre-antral follicles be exposed to FSH, for a number of days (5-7) during which time they attain “FSH-responsivity” and are now known as antral follicles (AF). These AF’s are now able to respond properly to stimulation with administered FSH-gonadotropins. In regular menstrual cycles, the rising FSH output from the pituitary gland insures that PAFs convert tor AF’s. The BCP (as well as prolonged administration of estrogen/progesterone) suppresses FSH. This suppression needs to be countered by artificially causing blood FSH levels to rise in order to cause PAF to AF conversion prior to COS commencing, otherwise pre-antral-to –antral follicle conversion will not take place in an orderly fashion, the duration of ovarian stimulation will be prolonged and both follicle and egg development may be compromised. GnRH agonists cause an immediate surge in release of FSH by the pituitary gland thus causing conversion from PAF to SAF. This is why women who take a BCP to launch a cycle of COS need to have an overlap of the BCP with an agonist. By overlapping the BCP with an agonist for a few days prior to menstruation the early recruited follicles are able to complete their developmental drive to the AF stage and as such, be ready to respond appropriately to optimal ovarian stimulation. Using this approach, the timing of the initiation of the IVF treatment cycle can readily and safely be regulated and controlled by varying the length of time that the woman is on the BCP.

Since optimizing follicular response to COS requires that prior to stimulation with gonadotropins, FSH-induced conversion from PAF to AF’s first be completed and the BCP suppresses FSH, it follows when it comes to women launching COS coming off a BCP something needs to be done to cause a rise in FSH for 5-7 days prior to menstruation heralding the cycle of CO S. This is where overlapping the BCP with a GnRHa comes in. The agonist causes FSH to be released by the pituitary gland and if overlapped with the BCP for several days and this will (within 2-5 days) facilitate PAF to AF conversion…. in time to start COS with the onset of menstruation. Initiating ovarian stimulation in women taking a BCP, without doing this is suboptimal.

________________________________________________________

2. PREMATURE LUTEINIZATION

Premature luteinization (“premature LH surge”) occurs when prior to the planned initiation of the hCG trigger, a progressive rise in LH, irreversibly compromises follicle and egg development and maturation. It is not a sporadic isolated event. It comes as a culmination of a series ovarian events, occurring mostly in susceptible women (i.e. usually older women and those with diminished ovarian reserve. It is more likely to occur when the protocol used for ovarian stimulation has failed to maintain LH activity at a low level prior to and throughout the ovarian stimulation process.  Once it occurs in any given stimulation cycle it cannot be switched off by changing the stimulation in progress or by administering GnRH antagonists (e.g. Ganirelix/Cetrotide/Orgalutron) midway in the cycle in the hope that this could rescue the eggs under development. It is my opinion, once premature luteinization commences, the cycle is doomed and outcome is doomed to fail. The condition increases the likelihood of premature ovulation, failed release of eggs during needle-guided egg retrieval (so called “empty follicle syndrome” and the incidence of egg/embryo “incompetence” (chromosomal aneuploidy).

 This situation is most commonly seen in older women and in women who have severely diminished ovarian reserve.  In many cases its effect can be prevented through implementation of strategic and individualized protocols for controlled ovarian stimulation (COS) coupled with optimizing the type, timing and dosage of the “hCG trigger shot.”

Normally, following optimal ovarian stimulation, the “trigger shot” is given for the purpose of it initiating meiosis (reproductive division) that is intended to halve the number of chromosomes from 46 to 23 within 32-36 hours. The hCG trigger also enables the egg to signal the “cumulus cells” that bind it firmly to the inner wall of the follicle (through enzymatic activity), to loosen or disperse, so that the egg can detach and readily be captured at egg retrieval (ER).

Older women, and women with diminished ovarian reserve, tend to have more biologically active LH in circulation. LH causes production of male hormone (androgens, predominantly testosterone), by ovarian connective tissue (stroma/theca). A little testosterone is needed for optimal follicle development and for FSH-induced ovogenesis (egg development). Too much LH activity compromises the latter, and eggs so affected are far more likely to be aneuploid following meiosis.

Women with the above mentioned conditions often have increased LH activity and are thus more likely to produce excessive ovarian testosterone. It follows that sustained, premature elevations in LH or premature luteinization (often referred to as a “premature LH surge”) will prejudice egg development. Such compromised eggs are much more likely to end up being complex aneuploid following the administration of the hCG trigger, leading to fruitless attempts at retrieval and the so called “empty follicle syndrome.”

The developing eggs of women who have increased LH activity (older women, and women with diminished ovarian reserve) are inordinately vulnerable to the effects of protracted exposure to LH-induced ovarian testosterone. Because of this, the administration of medications that provoke further pituitary LH release (e.g., clomiphene and Letrozole), drugs that contain LH or hCG (e.g., Menopur), or protocols of ovarian stimulation that provoke increased exposure to the woman’s own pituitary LH (e.g., “flare-agonist protocols”) and the use of “late pituitary blockade” (antagonist) protocols can be prejudicial.

The importance of individualizing COS protocol selection, precision with regard to the dosage and type of hCG trigger used, and the timing of its administration in such cases cannot be overstated. The ideal dosage of urinary-derived hCG (hCG-u) such as Novarel, Pregnyl and Profasi is 10,000U. When recombinant DNA-derived hCG (hCG-r) such as Ovidrel is used, the optimal dosage is 500mcg. A lower dosage of hCG or Ovidrel can, by compromising meiosis, increase the risk of egg aneuploidy, and thus of IVF outcome.

 

____________________________________

Please visit my new Blog on this very site, www. SherIVF.com, find the “search bar” and type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select.  Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly

 

  • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
  • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
  • The Fundamental Requirements For Achieving Optimal IVF Success
  • Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
  • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
  • The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
  • A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
  • Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
  • Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
  • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
  • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
  • Blastocyst Embryo Transfers Should be the Standard of Care in IVF
  • Frozen Embryo Transfer (FET) versus “Fresh” ET: How to Make the Decision
  • Frozen Embryo Transfer (FET): A Rational Approach to Hormonal Preparation and How new Methodology is Impacting IVF.
  • Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
  • Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation.
  • Preimplantation Genetic Testing (PGS) in IVF: It Should be Used Selectively and NOT be Routine.
  • Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
  • PGS in IVF: Are Some Chromosomally Abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
  • PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
  • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
  • Traveling for IVF from Out of State/Country–
  • A personalized, stepwise approach to IVF
  • How Many Embryos should be transferred: A Critical Decision in IVF.
  • The Role of Nutritional Supplements in Preparing for IVF
  • Premature Luteinization (“the premature LH surge): Why it happens and how it can be prevented.
  • IVF Egg Donation: A Comprehensive Overview

 

___________________________________________________

ADDENDUM: PLEASE READ!!

INTRODUCING SHER FERTILITY SOLUTIONS (SFS)

Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

 

 

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or,  enroll online on then home-page of my website (www.SherIVF.com). 

 _______________________________________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

http://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

Name: Smr Q

First day of Last period was on 9/2/2023..B.HCG today was 577micro IU/ml.. Is that normal…

Answer:

Repeat the test bin 2 days. It should double!

Geoff Sher

 

_______________________________________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

http://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

………………………………………………………………..

 

Name: Alisa W

Hi Dr Sher, first of all thank you for taking the time to read my question.
I am 35 years old, and I just had my 2nd failed FET. On both occasions we transferred a 5aa hatching embryo non PGT tested and we have 3 embryos on ice also good quality but not hatching. I should mention that I had the EC when I had just turned 34, both myself and my partner are healthy and fit, he is 36 years of age. We did ICSI and MFSS (microfluidic sperm sorting).
After our 1st failed FET we decided to investigate further and I had a hysteroscopy done back in November, all came back ok, and have done a test called Reproflow bloods which showed elevated NK cells and low TReg cells. My consultant had me on sitagliptin for 8 weeks and LDN 4.5mg before the transfer and said the levels were optimal prior to start stimulation for the 2nd transfer.
For my last protocol I was on estrogen 8mg per day, then dropped to 6mg after the 1st scan (day 12), prolutex inj X 2, cyclogest 400mg, crinone gel, Clexane, aspirin, dexamethasone 2mg for NK cells and intralipids 1 week before and after transfer. Also, progesterone levels were checked the day before and after transfer as well as White blood cells which were elevated after transfer. I should also mention that I have PCOS, irregular periods (very light in nature), thyroid issues (currently on 125mg eltroxin and Thybon) and have Hashimotos to top it up.
My question is, what should I do next? What tests do you think are necessary? Would you recommend transferring 2 embryos on my next transfer, will that increase my chances? Any advice would be greatly appreciated.

Answer:

I think we should talk. P)lease consider calling my assistant, Patti Converse at 702-533-2691 to set up an online consultation with me.

Geoff Sher

__________________________________________________________

Whenever a patient fails to achieve a viable pregnancy following embryo transfer (ET), the first question asked is why! Was it simply due to, bad luck?, How likely is the failure to recur in future attempts and what can be done differently, to avoid it happening next time?.

It is an indisputable fact that any IVF procedure is at least as likely to fail as it is to succeed. Thus when it comes to outcome, luck is an undeniable factor. Notwithstanding, it is incumbent upon the treating physician to carefully consider and address the causes of IVF failure before proceeding to another attempt:

  1. Age: The chance of a woman under 35Y of age having a baby per embryo transfer is about 35-40%. From there it declines progressively to under 5% by the time she reaches her mid-forties. This is largely due to declining chromosomal integrity of the eggs with advancing age…”a wear and tear effect” on eggs that are in the ovaries from birth.
  2. Embryo Quality/”competency (capable of propagating a viable pregnancy)”. As stated, the woman’s age plays a big role in determining egg/embryo quality/”competency”. This having been said, aside from age the protocol used for controlled ovarian stimulation (COS) is the next most important factor. It is especially important when it comes to older women, and women with diminished ovarian reserve (DOR) where it becomes essential to be aggressive, and to customize and individualize the ovarian stimulation protocol.

 We used to believe that the uterine environment is more beneficial to embryo development than is the incubator/petri dish and that accordingly, the earlier on in development that embryos are transferred to the uterus, the better. To achieve this goal, we used to select embryos for transfer based upon their day two or microscopic appearance (“grade”).  But we have since learned that the further an embryo has advanced in its development, the more likely it is to be “competent” and that embryos failing to reach the expanded blastocyst stage within 5-6 days of being fertilized are almost invariably “incompetent” and are unworthy of being transferred. Moreover, the introduction into clinical practice about 15y ago, (by Levent Keskintepe PhD and myself) of Preimplantation Genetic Sampling (PGS), which assesses for the presence of all the embryos chromosomes (complete chromosomal karyotyping), provides another tool by which to select the most “competent” embryos for transfer. This methodology has selective benefit when it comes to older women, women with DOR, cases of unexplained repeated IVF failure and women who experience recurrent pregnancy loss (RPL).

  1. The number of the embryos transferred: Most patients believe that the more embryos transferred the greater the chance of success. To some extent this might be true, but if the problem lies with the use of a suboptimal COS protocol, transferring more embryos at a time won’t improve the chance of success. Nor will the transfer of a greater number of embryos solve an underlying embryo implantation dysfunction (anatomical molecular or immunologic).Moreover, the transfer of multiple embryos, should they implant, can and all too often does result in triplets or greater (high order multiples) which increases the incidence of maternal pregnancy-induced complications and of premature delivery with its serious risks to the newborn. It is for this reason that I rarely recommend the transfer of more than 2 embryos at a time and am moving in the direction of advising single embryo transfers …especially when it comes to transferring embryos derived through the fertilization of eggs from young women.

 

  1. Implantation Dysfunction (ID): Implantation dysfunction is a very common (often overlooked) cause of “unexplained” IVF failure. This is especially the case in young ovulating women who have normal ovarian reserve and have fertile partners. Failure to identify, typify, and address such issues is, in my opinion, an unfortunate and relatively common cause of repeated IVF failure in such women. Common sense dictates that if ultrasound guided embryo transfer is performed competently and yet repeated IVF attempts fail to propagate a viable pregnancy, implantation dysfunction must be seriously considered. Yet ID is probably the most overlooked factor. The most common causes of implantation dysfunction are:

 

  1. A“ thin uterine lining”
  2. A uterus with surface lesions in the cavity (polyps, fibroids, scar tissue)
  3. Immunologic implantation dysfunction (IID)
  4. Endocrine/molecular endometrial receptivity issues
  5. Ureaplasma Urealyticum (UU) Infection of cervical mucous and the endometrial lining of the uterus, can sometimes present as unexplained early pregnancy loss or unexplained failure following intrauterine insemination or IVF. The infection can also occur in the man, (prostatitis) and thus can go back and forth between partners, with sexual intercourse. This is the reason why both partners must be tested and if positive, should be treated contemporaneously.

Certain causes of infertility are repetitive and thus cannot readily be reversed. Examples include advanced age of the woman; severe male infertility; immunologic infertility associated with alloimmune implantation dysfunction (especially if it is a “complete DQ alpha genetic match between partners plus uterine natural killer cell activation (NKa).

I strongly recommend that you visit www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select.  Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

 

  • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
  • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
  • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
  • The Fundamental Requirements for Achieving Optimal IVF Success
  • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
  • Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
  • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
  • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
  • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
  • Blastocyst Embryo Transfers should be the Standard of Care in IVF
  • IVF: How Many Attempts should be considered before Stopping?
  • “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
  • IVF Failure and Implantation Dysfunction:
  • The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
  • Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
  • Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
  • Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
  • Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management 🙁 Case Report)
  • Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
  • Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
  • Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
  • Endometrial Thickness, Uterine Pathology and Immunologic Factors
  • Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
  • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
  • A personalized, stepwise approach to IVF
  • How Many Embryos should be transferred: A Critical Decision in IVF?

______________________________________________________

ADDENDUM: PLEASE READ!!

INTRODUCING SHER FERTILITY SOLUTIONS (SFS)

Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

 

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or,  enroll online on then home-page of my website (www.SherIVF.com). 

 

PLEASE SPREAD THE WORD ABOUT SFS!

 

Geoff Sher

__________________________________________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

http://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

………………………………………………………………..

 

 

 

Name: Ashleigh S

Hi
I was taking Buserilin daily for two weeks as a down regulation, prior to beginning stimulation for a frozen embryo transfer. One evening, I took my injection 2.5/3 hours late and the next day my cycle had to be cancelled because my estrogen was too high. My question is, did my estrogen rise that much within 24 hours?! (It was over 2000) And was it because of my late dose or was it because I simply did not respond to the medication at all basically. Help, I’m driving myself crazy.

Answer:

In all like3lihood, the late dosage of Buserelin had nothing to do with this.

Geoff Sher

_______________________________________________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

http://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

………………………………………………………………..

 

Name: Amanda B

Hello Dr.
I am turning 40 this year and have pcos. Can you explain why my AMH is still very high? 12 years ago it was 10 ng/ml, now it’s 6.85. I also used to have 15 follicles on each ovary, now I have between 20-25.
Does this mean I will have late onset menopause? I am particularly concerned about my risk of ovarian and breast cancer as late onset menopause and pcos are both risk factors. I know that oopherectomies are not usually done prophylactically but I’m having major concerns about my cancer risk. My RE also suggests I go a round of ivf but mentioned, not conceiving after fertility treatment is also a risk factor. At this point, I feel like all these risks make it inevitable that I will get ovarian cancer. Please help.

Answer:

It ism true thatvwo9men with PCOS have an increased risk of developing breast and ovarian cancer. However, this is by no means a great risk. You need to have regular check-up evaluations at least yearly, but I would not become paranoid about this. In the vast majority of cases it is not a pr4oblem.G-d bless!

Geoff Sher

_________________________________________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

http://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

………………………………………………………………..

 

Name: Stephanie K

Hello Dr Sher,

First of all I would like to thank you in advance for giving me a chance to ask you a question and for answering if. I really appreciate it.

I am 33 years old, have a good egg reserve (PCO), all my hormonal blood tests came out good. My FSH on cycle day 4 is 8, LH is 11 and AMH 4.71 ng/ml.

For my first IVF cycle (Feb 2022) I was on Gonal F 225 only and was triggered with Ovidrel when my leading follicle was not very big – 17mm. As a result, I got 24 eggs retrieved, but only 3 mature and unfortunately one fertilized but abnormally. So it was a first IVF failure…

I then switched clinic, did a second IVF cycle (July 2022) and I had a change of protocol. I was on Menopur 150 and Rekovelle 9 mcg. I was triggered with a double trigger (HcG 2500 units and suprefact 1ml) when my leading follicle was 20mm. As a result, I got 16 eggs retrieved, only 2 mature and one fertilized and I had a fresh day 3 embryo transfer (8 cells) which unfortunately was negative….

Before doing my third round of IVF, I did my blood tests again, had 3 different genetic testing (caryotype, infertility female panel and the gene mutation TUBB8 were all tested and nothing was found). I had a slightly different protocol: menopur 150, Rekovelle 7mcg this time because of my weight, and they added Letrozole 5mg which I took during the entire stims for 13 days. I was triggered when my leading follicle was bigger at 22-23mm and they gave my a double trigger with an increase of HcG at 10,000 units this time along with Suprefact 1ml and they waited 37 hours before doing my egg retrieval. As a result, I got 19 eggs, but this time zero were mature!!! They manage to mature 4 of them in the lab, and only one egg fertilized and arrested at day 3 with 7 cells… (they wanted to push it to day 5 this time…)

I feel completely at loss and I don’t know what to expect next… are my eggs the problem and I need to turn to donor eggs? Or is this more of a protocol issue? I feel like the leteozole made things worse as this was the worst results of all 3 cycles and the “new” thing that was added was the letrozole… Any advice would be appreciated. Thank you so much! 🙏🏻

Answer:

One of the commonest questions asked by patients undergoing IVF relates to the likelihood of their eggs fertilizing and the likely “quality of their embryos. This is also one of the most difficult questions to answer. On the one hand many factors that profoundly influence egg quality; such as the genetic recruitment of eggs for use in an upcoming cycle, the woman’s age and her ovarian reserve, are our outside of our control. On the other hand the protocol for controlled ovarian stimulation (COS) can also profoundly influence egg/embryo development and this is indeed chosen by the treating physician.

 

First; it should be understood that the most important determinant of fertilization potential, embryo development and blastocyst generation, is the numerical chromosomal integrity of the egg (While sperm quality does play a role, in the absence of moderate to severe sperm dysfunction this is (moderate or severe male factor infertility a relatively small one). Human eggs have the highest rate of numerical chromosomal irregularities (aneuploidy) of all mammals. In fact only about half the eggs of women in their twenties or early thirties, have the required number of chromosomes (euploid), without which upon fertilization the cannot propagate a normal pregnancy. As the woman advances into and beyond her mid-thirties, the percentage of eggs euploid eggs declines progressively such that by the age of 40 years, only about one out of 5-6 are likely to be chromosomally normal and by the time she reaches her mid-forties less than one in ten of her eggs will be euploid.

 

So the woman’s age certainly impacts egg “quality. In addition diminished  ovarian reserve (DOR) as assessed by measuring the blood AMH level,  is another factor that. Women with DOR often have disruption of the ovarian hormonal environment which can compromise egg/embryo development. This is also seen in women with a condition known as polycystic ovarian syndrome (PCOS) where the woman has very high ovarian reserve (elevated AMH). Your AMH of 4.7ng/ml +m your “inverted FSH/LH ratio) coupledm with the high number of follicles you produce might indicate that you have PCOS. This must be further assessed, because 5the protocol used for ovarian stimulation must be adjusted/individualized in such cases or egg quality with often be poor.

 

 During the normal, ovulation cycle, ovarian hormonal changes are regulated to avoid irregularities in production and interaction that could adversely influence follicle development and egg quality. As an example, small amounts of androgens (male hormones such as testosterone), that are produced by the ovarian stroma (tissue surrounding ovarian follicles) during the pre-ovulatory phase of the cycle enhance late follicle development, estrogen production by the granulosa cells (that line the inner walls of follicles), and egg maturation. However, over-production of testosterone can adversely influence the same processes. The latter is commonly encountered in women who have DOR and women with PCOS. It follows that COS protocols should be individualized and geared toward optimizing follicle growth and development time while avoiding excessive ovarian androgen (testosterone) production and that the hCG “trigger shot” should be carefully timed.

 

 

Second; embryos that fail to develop into blastocysts are almost always aneuploid and not worthy of being transferred to the uterus because they will either not implant, will miscarry or could even result in a chromosomally abnormal baby (e.g. Down syndrome). However, it is incorrect to assume that all embryos reaching the blastocyst stage will be euploid (“competent”).  ). It is true that since many aneuploid embryos are lost during development and that those failing to survive to the blastocyst stage are far more likely to be competent than are earlier (cleaved) embryos.  What is also true is that the older the woman who produces the eggs, the less likely it is that a given blastocyst will be “competent”. As an example, a morphologically pristine blastocyst derived from the egg of a 30 year old woman would have about a 50:50 chance of being euploid and a 30% chance of propagating a healthy, normal baby, while a microscopically comparable blastocyst derived through fertilization of the eggs from a 40 year old, would be about half as likely to be euploid and/or propagate a healthy baby.

 

While the effect of species on the potential of eggs to be euploid at ovulation is genetically preordained and nothing we do can alter this equation, there is unfortunately a lot we can (often unwittingly) do to worsen the situation by selecting a suboptimal protocol of controlled ovarian stimulation (COS). This, by creating an adverse intraovarian hormonal environment will often disrupt normal egg development and lead to a higher incidence of egg aneuploidy than otherwise might have occurred.  Older women, women with diminished ovarian reserve (DOR) and those with polycystic ovarian syndrome are especially vulnerable in this regard.

 

 

In summary it is important to understand the influence species, age of the woman as well as the effect of the COS protocol can have on egg/embryo quality and thus on IVF outcome. The selection of an individualized protocol for ovarian stimulation is one of the most important decisions that the RE has to make and this becomes even more relevant when dealing with older women, those with DOR and women with PCOS. Such factors will in large part determine fertilization potential, the rate of blastocyst generation and indeed IVF outcome.

 

 

I strongly recommend that you visit www.SherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select.  Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

  • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
  • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
  • The Fundamental Requirements For Achieving Optimal IVF Success
  • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
  • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
  • The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
  • A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
  • Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
  • Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
  • Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
  • Optimizing Response to Ovarian Stimulation in Women with Compromised Ovarian Response to Ovarian Stimulation: A Personal Approach.
  • Egg Maturation in IVF: How Egg “Immaturity”, “Post-maturity” and “Dysmaturity” Influence IVF Outcome:
  • Commonly Asked Question in IVF: “Why Did so Few of my Eggs Fertilize and, so Many Fail to Reach Blastocyst?”
  • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
  • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
  • Staggered IVF
  • Staggered IVF with PGS- Selection of “Competent” Embryos Greatly Enhances the Utility & Efficiency of IVF.
  • Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
  • Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation
  • Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
  • IVF: Selecting the Best Quality Embryos to Transfer
  • Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
  • PGS in IVF: Are Some Chromosomally abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
  • PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
  • IVF outcome: How Does Advancing Age and Diminished Ovarian Reserve (DOR) Affect Egg/Embryo “Competency” and How Should the Problem be addressed.

________________________________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

http://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

………………………………………………………………..

 

 

Name: Lindsey M

I just failed my first round of IVF. I am 33. I have a 3 year old (spontaneous pregnancy). History of ulcerative colitis and j pouch with revision in 2018. My HSG was normal however given my previous gut history. My AMH last April was 2.6 and dropped to 1.5 this month. My first protocol included follistim 225 with menopur (75) bumped up to 150 on day 3 of stim due to low response. Antagonist was added on day 8 and I triggered on day 14. I only had 5 eggs. 4 fertilized and 1 embryo to freeze. Transfer ended in a chemical pregnancy. I have always had cyst on my ultrasounds – my doc said my estrogen led her to believe I had 10-12 eggs but turns out most were cyst. Would love to speak with you more. She mentioned lupron flare with growth hormone for next protocol

Answer:

Whenever a patient fails to achieve a viable pregnancy following embryo transfer (ET), the first question asked is why! Was it simply due to, bad luck?, How likely is the failure to recur in future attempts and what can be done differently, to avoid it happening next time?.

It is an indisputable fact that any IVF procedure is at least as likely to fail as it is to succeed. Thus when it comes to outcome, luck is an undeniable factor. Notwithstanding, it is incumbent upon the treating physician to carefully consider and address the causes of IVF failure before proceeding to another attempt:

  1. Age: The chance of a woman under 35Y of age having a baby per embryo transfer is about 35-40%. From there it declines progressively to under 5% by the time she reaches her mid-forties. This is largely due to declining chromosomal integrity of the eggs with advancing age…”a wear and tear effect” on eggs that are in the ovaries from birth.
  2. Embryo Quality/”competency (capable of propagating a viable pregnancy)”. As stated, the woman’s age plays a big role in determining egg/embryo quality/”competency”. This having been said, aside from age the protocol used for controlled ovarian stimulation (COS) is the next most important factor. It is especially important when it comes to older women, and women with diminished ovarian reserve (DOR) where it becomes essential to be aggressive, and to customize and individualize the ovarian stimulation protocol.

 We used to believe that the uterine environment is more beneficial to embryo development than is the incubator/petri dish and that accordingly, the earlier on in development that embryos are transferred to the uterus, the better. To achieve this goal, we used to select embryos for transfer based upon their day two or microscopic appearance (“grade”).  But we have since learned that the further an embryo has advanced in its development, the more likely it is to be “competent” and that embryos failing to reach the expanded blastocyst stage within 5-6 days of being fertilized are almost invariably “incompetent” and are unworthy of being transferred. Moreover, the introduction into clinical practice about 15y ago, (by Levent Keskintepe PhD and myself) of Preimplantation Genetic Sampling (PGS), which assesses for the presence of all the embryos chromosomes (complete chromosomal karyotyping), provides another tool by which to select the most “competent” embryos for transfer. This methodology has selective benefit when it comes to older women, women with DOR, cases of unexplained repeated IVF failure and women who experience recurrent pregnancy loss (RPL).

  1. The number of the embryos transferred: Most patients believe that the more embryos transferred the greater the chance of success. To some extent this might be true, but if the problem lies with the use of a suboptimal COS protocol, transferring more embryos at a time won’t improve the chance of success. Nor will the transfer of a greater number of embryos solve an underlying embryo implantation dysfunction (anatomical molecular or immunologic).Moreover, the transfer of multiple embryos, should they implant, can and all too often does result in triplets or greater (high order multiples) which increases the incidence of maternal pregnancy-induced complications and of premature delivery with its serious risks to the newborn. It is for this reason that I rarely recommend the transfer of more than 2 embryos at a time and am moving in the direction of advising single embryo transfers …especially when it comes to transferring embryos derived through the fertilization of eggs from young women.

 

  1. Implantation Dysfunction (ID): Implantation dysfunction is a very common (often overlooked) cause of “unexplained” IVF failure. This is especially the case in young ovulating women who have normal ovarian reserve and have fertile partners. Failure to identify, typify, and address such issues is, in my opinion, an unfortunate and relatively common cause of repeated IVF failure in such women. Common sense dictates that if ultrasound guided embryo transfer is performed competently and yet repeated IVF attempts fail to propagate a viable pregnancy, implantation dysfunction must be seriously considered. Yet ID is probably the most overlooked factor. The most common causes of implantation dysfunction are:

 

  1. A“ thin uterine lining”
  2. A uterus with surface lesions in the cavity (polyps, fibroids, scar tissue)
  3. Immunologic implantation dysfunction (IID)
  4. Endocrine/molecular endometrial receptivity issues
  5. Ureaplasma Urealyticum (UU) Infection of cervical mucous and the endometrial lining of the uterus, can sometimes present as unexplained early pregnancy loss or unexplained failure following intrauterine insemination or IVF. The infection can also occur in the man, (prostatitis) and thus can go back and forth between partners, with sexual intercourse. This is the reason why both partners must be tested and if positive, should be treated contemporaneously.

Certain causes of infertility are repetitive and thus cannot readily be reversed. Examples include advanced age of the woman; severe male infertility; immunologic infertility associated with alloimmune implantation dysfunction (especially if it is a “complete DQ alpha genetic match between partners plus uterine natural killer cell activation (NKa).

I strongly recommend that you visit www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select.  Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

 

  • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
  • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
  • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
  • The Fundamental Requirements for Achieving Optimal IVF Success
  • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
  • Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
  • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
  • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
  • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
  • Blastocyst Embryo Transfers should be the Standard of Care in IVF
  • IVF: How Many Attempts should be considered before Stopping?
  • “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
  • IVF Failure and Implantation Dysfunction:
  • The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
  • Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
  • Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
  • Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
  • Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management 🙁 Case Report)
  • Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
  • Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
  • Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
  • Endometrial Thickness, Uterine Pathology and Immunologic Factors
  • Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
  • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
  • A personalized, stepwise approach to IVF
  • How Many Embryos should be transferred: A Critical Decision in IVF?

______________________________________________________

ADDENDUM: PLEASE

 

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

http://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

………………………………………………………………..

 

Name: Prashant S

Need your support to access my ebryos by AI

Answer:

Not sure how to  advise you!

 

Sorry!

 

Geoff Sher

 

____________________________________________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

http://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

………………………………………………………………..

 

 

Name: Lela C

Hi, checking to see from what dae do you start counting IVF baby with a 5 day tranfer? I read where you add 2 weeks then, I read where you don’t add 2 weeks. Then I read where you add 2 weeks and 5 days??? Thank you!

Answer:

You add 2 weeks + 5d.

 

Geoff Sher

 

___________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

http://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

………………………………………………………………..

 

 

Name: Nari J

What is in your opinion the best IVF protocol for a 46 year old with FSH 19 and AMH 0.51, poor responder, 4 canceled IVF cycles turned into IUI because of dominant ovarian follicle and only 1 egg retrieval of 3 follicles that 2 were mature and fertilized but both arrested at day 4? Have tried strogen priming with Gonal f and clomid, strogen priming and clomid alone, letrozol and Gonal f alone with the latter achieving growth of 4 follicles and egg retrieval. Thank you!!!

Answer:

Very respectfully, the chance of IVF success at 46y with these parameters is negligible. Of course it would be your right to try, but in my opinion, only IVF with egg donation would offer success!

Geoffrey Sher

________________________________________________________

The importance of the IVF stimulation protocol on egg/embryo quality cannot be overstated. This factor seems often to be overlooked or discounted by the IVF practitioners who use a “one-size-fits-all” approach to ovarian stimulation. My experience is that the use of individualized/customized COS protocols can greatly improve IVF outcome. While no one can influence underlying genetics or turn back the clock on a woman’s age, any competent IVF specialist should be able to tailor the protocol for COS to meet the individual needs of the patient.

Gonadotropins (LH and FSH), whether produced by the pituitary gland or administered by way of fertility drugs, have different “targeted” sites of action in the ovary. FSH targets cells that line the inner wall of the follicle (granulosa cells) and also form the cumulus cells that bind the egg to the inner surface of the follicle. Granulosa cells are responsible for estrogen production.

LH, on the other hand, targets the ovarian connective tissue (stroma/theca) that surrounds ovarian follicles resulting in the production of male hormones such as testosterone (predominantly), androstenedione and DHEA. These androgens are then transported to the granulosa cells of the adjacent follicles in a “bucket brigade fashion”. There FSH converts testosterone to estradiol, causing granulosa cells to multiply (proliferate) and produce estradiol, follicles to  grows and eggs to develop (ovogenesis) It follows that  ovarian androgens (mainly testosterone) is absolutely indispensable to follicle/egg growth and development.

However, the emphasis is on a “normal” amount of testosterone. Over-exposure of the follicle to testosterone can in my opinion,  compromise egg development and lead to an increased likelihood of chromosomal irregularities (aneuploid) following LH/hCG-induced egg maturational division (meiosis) and compromise embryo “competency/quality.

Ovarian androgens can also reach the uterine lining where they sometimes will compromise estrogen receptor -induced endometrial growth and development.

A significant percentage of  older women and those who have diminished ovarian reserve (DOR) have increased LH activity is increased. Such women either over-produce LH and/or the LH produced is far more biologically active. Chronically increased LH activity leads to overgrowth of ovarian connective tissue (stroma/theca). This condition, which is often referred to as Stromal Hyperplasia or hyperthecosis can result in  excessive ovarian androgen/testosterone production and poorer egg-embryo quality/competency, Similarly, women with polycystic ovarian syndrome (PCOS), also characteristically have Stromal hyperplasia/hyperthecosis due to chronically increased LH activity. Thus they too often manifest with increased ovarian androgen production. It is therefore not surprising that “poor egg/embryo quality” is often also a feature of PCOS.

In my opinion, the over-administration of LH-containing menotropins such as Menopur, [which is comprised of roughly equal amount of FSH and   hCG ,which acts similar to LH)], to older women, women with DOR and those who have PCOS can also lead to reduced egg/embryo competency . Similarly, drugs such as clomiphene or Letrozole that cause the pituitary gland to release excessive amounts of LH, are also potentially harmful to egg development and in my opinion, are best omitted from IVF COS protocols. This is especially the case when it comes to older women and those with DOR, who in my opinion should preferably be stimulated using FSH-dominant products such as Follistim, Puregon, Fostimon and Gonal-F. 

Gonadotropin releasing hormone agonists (GnRHa): GnRHa such as Lupron, Buserelin, Superfact, Gonopeptyl etc. are often used to launch ovarian stimulation cycles. They act by causing an initial outpouring followed by a depletion of pituitary gonadotropins. This results in LH levels falling to low concentrations, within 4-7 days, thereby establishing a relatively “LH-free environment”. When GnRHa are administered for about 7 days prior to initiating gonadotropin stimulation (“long” pituitary down-regulation”), the LH depletion that will exist when COS is initiated, will usually be protective of subsequent egg development. In contrast, when the GnRHa administration commences along with the initiation of gonadotropin therapy, there will be a resultant immediate surge in the release of pituitary LH with  the potential to increase ovarian testosterone to egg-compromising levels , from the outset of COS. This, in my opinion could be particularly harmful when undertaken in older women and those who have DOR.

GnRH-antagonists such as Ganirelix, Cetrotide and Orgalutron, on the other hand, act very rapidly (within hours) to block pituitary LH release. The purpose in using GnRH antagonists is to prevent the release of LH during COS. In contrast, the LH-lowering effect of GnRH agonists develops over a number of days.

GnRH antagonists are traditionally given, starting after  5th -7th day of gonadotropin stimulation. However, when this is done in older women and those (regardless of age) who have DOR, LH-suppression might be reached too late to prevent the deleterious effect of excessive ovarian androgen production on egg development in the early stage of ovarian stimulation. This is why, it is my preference to administer GnRH-antagonists, starting at the initiation of gonadotropin administration.

Preferred Protocols for Controlled Ovarian Stimulation (COS):

  • Long GnRH Agonist Protocols: The most prescribed protocol for agonist/gonadotropin administration is the so-called “long protocol”. An agonist (usually, Lupron) is given either in a natural cycle, starting 5-7 days prior to menstruation or is overlapped with the BCP for two days whereupon the latter is stopped and the Lupron, continued until menstruation ensues. The agonist precipitates a rapid rise in FSH and LH level, which is rapidly followed by a precipitous decline in the blood level of both, to near zero. This is followed by uterine withdrawal bleeding (menstruation) within 5-7 days of starting the agonist treatment, whereupon gonadotropin treatment is initiated (preferably within 7-10 days of the onset of menses) while daily Lupron injections continue, to ensure a relatively “low LH- environment”. Gonadotropin administration continues until the hCG trigger.
  • Short (“Flare”) GnRH-agonist (GnRHa) Protocol: Another GnRHa usage for COS is the so called “(micro) flare protocol”. This involves initiating gonadotropin therapy commensurate with initiation of gonadotropin administration. The supposed objective is to deliberately allow Lupron to elicit an initial surge (“flare”) in pituitary FSH release in order to augment FSH administration by increased FSH production. Unfortunately, this “springboard effect” constitutes “a double-edged sword”. While it indeed increases the release of FSH, it at the same time causes a surge in LH release. The latter can evoke excessive ovarian stromal/thecal androgen production which could potentially compromise egg quality, especially when it comes to older women and women with DOR. I am of the opinion that by evoking an exaggerated ovarian androgen response, such “(micro) flare protocols” can harm egg/embryo quality and reduce IVF success rates, especially when it comes to COS in older women, and in women with diminished ovarian reserve. Accordingly, I do not prescribe such protocols to my IVF patients
  • Long-Agonist/Antagonist Conversion Protocol (A/ACP):With a few (notable) exceptions I preferentially advocate this protocol for many of my patients. With the A/ACP, as with the long protocol (see above) the woman again prepares to launch her stimulation cycle by taking a BCP for at least ten days before overlapping with an agonist such as Lupron. However, when about 5-7 days later her menstruation starts, she supplants the agonist with a with 250 mcg) of an antagonist (e.g. Ganirelix, Orgalutron or Cetrotide). Within a few days of this switch-over, gonadotropin stimulation is commenced. Both the antagonist and the gonadotropins are then continued until the hCG trigger. The purpose in switching from agonist to antagonist is to intentionally allow only a very small amount of the woman’s own pituitary LH to enter her blood and reach her ovaries, while at the same time preventing a large amount of LH from reaching her ovaries. This is because while a small amount of LH is essential to promote and optimize FSH-induced follicular growth and egg maturation, a large concentration of LH can trigger over-production of ovarian stromal testosterone, with an adverse effect of follicle/egg/embryo quality. Moreover, since testosterone also down-regulates estrogen receptors in the endometrium, an excess of testosterone can also have an adverse effect on endometrial growth. Also, since agonists might suppress some ovarian response to the gonadotropin stimulation, antagonists do not do so. It is for this reason that the A/ACP is so well suited to older women and those with some degree of diminished ovarian reserve.
  • Agonist/antagonist conversion protocol with estrogen priming:Patients start their treatment cycle on a combined (monophasic) birth control pill-BCP (e.g., Marvelon, Desogen, Orthonovum 135; Low-Estrin…etc.)  for at least 8-10 days (depending on individual circumstances), before commencing controlled ovarian stimulation for IVF. With this approach, a GnRH agonist (e.g. Lupron/Superfact/Buserelin/Decapeptyl etc.) is continued until menstruation ensues (usually 5-7 days after commencement of the GnRH-agonist). At this point, the GnRH-agonist is SUPPLANTED with 250mcg GnRH antagonist (e.g. Ganirelix/Cetrotide, Orgalutron) and daily estradiol(E2) “priming” commences using either E2 skin-patches or intramuscular estradiol valerate (Delestrogen) injections, twice weekly while continuing the administration of the GnRH antagonist. Seven (7) days after commencing the E2 skin patches or intramuscular Delestrogen, daily injections of recombinant FSH-(e.g., Follistim/Gonal-F/Puregon)  + menotropin (e.g., Menopur)  therapy begins.. This is continued at a modified dosage, along with E2 patches or Delestrogen injections) until the “hCG trigger”. The egg retrieval is performed 36 hours later.

There are a few potential drawback to the use of the A/ACP. We have learned that prolonged use of a GnRH antagonist throughout the ovarian stimulation process can compromise the predictive value of serial plasma E2 measurements to evaluate follicle growth and development. It appears that when the antagonist is given throughout stimulation, the blood E2 levels tend to be significantly lower than when the agonist alone is used or where antagonist treatment is only commenced 5-7 days into the ovarian stimulation process. The reason for this is presently unclear. Accordingly, when the A/ACP is employed, we rely more on follicle size monitoring than on serial blood E2 trends to assess progress.

Also, younger women (under 30 years) and women with absent, irregular or dysfunctional ovulation, and those with polycystic ovarian syndrome are at risk of developing life-threatening Severe Ovarian Hyperstimulation Syndrome (OHSS). The prediction of this condition requires daily access to accurate blood E2 levels. Accordingly, we currently tend to refrain from prescribing the A/ACP in such cases, preferring instead use the “standard long-protocol” approach.

  • Short-GnRH antagonist protocols:The use of GnRH antagonists as currently prescribed in ovarian stimulation cycles (i.e. the administration of 250mcg daily starting on the 6th or 7th day of stimulation with gonadotropins) may be problematic, especially in women over 39 yrs., women with diminished ovarian reserve (i.e. “poor responders” to gonadotropins), and women with PCOS. Such women tend to have higher levels of LH to start with and as such the initiation of LH suppression with GnRH antagonists so late in the cycle (usually on day 6-7) of stimulation fails to suppress LH early enough to avoid compromising egg development. This can adversely influence egg/embryo quality and endometrial development. As is the case with the “microflare” approach (see above) the use of GnRH antagonist protocols in younger women who have normal ovarian reserve, is acceptable. Again, for reasons of caution, and because I see no benefit in doing so, I personally never prescribe this approach for my patients. Presumably, the reason for the suggested mid-follicular initiation of high dose GnRH antagonist is to prevent the occurrence of the so called “premature LH surge”, which is known to be associated with “follicular exhaustion” and poor egg/embryo quality. However the term “premature LH surge” is a misnomer and the concept of this being a “terminal event” or an isolated insult is erroneous. In fact, the event is the culmination (end point) of the progressive escalation in LH (“a staircase effect”) which results in increasing ovarian stromal activation with commensurate growing androgen production. Trying to improve ovarian response and protect against follicular exhaustion by administering GnRH antagonists during the final few days of ovarian stimulation is like trying to prevent a shipwreck by removing the tip of an iceberg.
  • Short-GnRH-agonist (“micro-flare”) protocols:Another approach to COH is by way of so-called “microflare protocols”. This involves initiating gonadotropin therapy simultaneously with the administration of GnRH agonist. The intent is to deliberately allow Lupron to affect an initial surge (“flare”) in pituitary FSH release to augment ovarian response to the gonadotropin medication. Unfortunately, this approach represents “a double-edged sword” as the resulting increased release of FSH is likely to be accompanied by a concomitant (excessive) rise in LH levels that could evoke excessive production of male hormone by the ovarian stroma. The latter in turn could potentially compromise egg quality, especially in women over 39 years of age, women with diminished ovarian reserve, and in women with polycystic ovarian syndrome (PCOS) – all of whose ovaries have increased sensitivity to LH. In this way, “microflare protocols” can potentially hinder egg/embryo development and reduce IVF success rates. While microflare protocols usually are not harmful in younger women and those with normal ovarian reserve, I personally avoid this approach altogether for safety’s sake. The dominant follicles or eggs of women on GnRH-agonist “micro-flare protocols” can be exposed to exaggerated agonist-induced LH release, (the “flare effect”) while the follicles/eggs of women, who receive GnRH antagonists starting 6-8 days following the initiation of stimulation with gonadotropins can likewise be exposed to pituitary LH-induced ovarian male hormones (especially testosterone). While this is not necessarily problematic in younger women and those with adequate ovarian reserve (“normal responders”) it could be decidedly prejudicial in “poor responders” and older women where there is increased follicle and egg vulnerability to high local male hormone levels.
  • The “Trigger Shot”- A Critical Decision:The egg goes through maturational division (meiosis) during the 36-hour period that precedes ovulation or retrieval. The efficiency of this process will determine the outcome of reproduction. It follows that when it comes to ovulation induction, aside from selecting a suitable protocol for COS one of the most important decisions the clinician has to make involves choosing and implementing with logic and precision, the “trigger shot” by which to facilitate meiosis.
    • Urinary versus recombinant hCG:Until quite recently, the standard method used to initiate the “trigger shot” was through the administration of 10,000 units of hCGu. More recently, a recombinant form of hCGr (Ovidrel) was introduced and marketed in 250 mcg doses. But clinical experience strongly suggests that 250 mcg of Ovidrel is most likely not equivalent in biological potency to 10,000 units of hCG. It probably at best only has 60%of the potency of a 10,000U dose of hCGu and as such might not be sufficient to fully promote meiosis, especially in cases where the woman has numerous follicles. For this reason, I firmly believe that when hCGr is selected as the “trigger shot” the dosage should be doubled to 500 mcg, at which dosage it will probably have an equivalent effect on promoting meiosis as would 10,000 units of hCGu.
    • The dosage of hCG used: Some clinicians, when faced with a risk of OHSS developing will deliberately elect to reduce the dosage of hCG administered as a trigger in the hope that by doing so, the risk of developing critical OHSS will be lowered. It is my opinion that such an approach is not optimal because a low dose of hCG (e.g., 5000 units hCGu or 25omcg hCGr) is likely inadequate to optimize the efficiency of meiosis, particularly when it comes to cases such as this where there are numerous follicles. In my opinion a far better approach is to use a method that I first described in 1989, known as “prolonged coasting”
    • Use of hCG versus a GnRHa(e.g., Lupron/Buserelin/Superfact) as the trigger shot: It has been suggested that the use of an “agonist ( Lupron) trigger” in women at risk of developing severe ovarian hyperstimulation syndrome (OHSS) could potentially reduce the risk of the condition becoming critical and thereby placing the woman at risk of developing life-endangering complications. It is for this reason that many RE’s prefer to trigger meiosis in this way (using an agonist-Lupron) rather than through the use of hCG. The agonist promptly causes the woman’s pituitary gland to expunge a large amount of LH over a short period of time and it is this LH “surge” that triggers meiosis. The problem with this approach, in my opinion, is that it is hard to predict how much LH will be released in by the pituitary gland of a given patient receiving an agonist trigger shot, especially if the woman was down-regulated using an agonist, or in cases where an antagonist was used to block pituitary LH release. For this reason, I personally prefer to use hCGu for the trigger, even in cases of ovarian hyperstimulation, with one important proviso…that she underwent “prolonged coasting” in order to reduce the risk of critical OHSS prior to the 10,000 unit hCGu “trigger”.
    • Combined use of hCG +GnRHa; This approach is preferable to the use of a GnRHa, alone. However, in my opinion is inferior to the appropriate and correct use of hCG, alone.
    • The timing of the trigger shot to initiate meiosis:This should coincide with the majority of ovarian follicles being >15 mm in mean diameter with several follicles having reached 18-22 mm. Follicles of larger than 22 mm will usually harbor overdeveloped eggs which in turn will usually fail to produce good quality eggs. Conversely, follicles less than 15 mm will usually harbor underdeveloped eggs that are more likely to be aneuploid and incompetent following the “trigger”.

Severe Ovarian Hyperstimulation Syndrome (OHSS) and prolonged Coasting”

OHSS is a life-endangering condition that usually occurs in women undergoing COS where the blood E2 level rises to above 4,000pg/ml. The risk escalates to greater than 80% in cases where the E2 level rises above 6,000pg/ml. It rarely occurs in normally ovulating women or older (>39Y) women and is more commonly encountered in:

  • Young women (under 30y) who have a high ovarian reserve(based upon basal FSH and AMH.
  • Women with polycystic Ovarian Syndrome (PCOS)
  • Non-PCOS women who do not ovulate spontaneously

The treating physician should be alerted to the possibility of hyperstimulation when encountering a woman who develops >25 ovarian follicles of 14mm-16mm in mean diameter, in association with a blood E2 level of above 2,5000pg/ml prior to the hCG “trigger”.

OHSS is a self-limiting condition. Its development is linked to the effect of hCG and thus does not occur until the “hCG trigger” is administered. In fact, there is virtually no risk of OHSS until the hCG “trigger” is administered.

Prolonged Coasting” is a procedure I introduced in 1991. It involves abruptly stopping gonadotropin therapy while continuing to administer the GnRH agonist (e.g. Lupron, Buserelin) deferring the hCG “trigger” until the woman is out of risk (as evidenced by a fall in plasma estradiol level to below 2,500pg/ml).

It is important that “prolonged coasting” be initiated as soon as two or more follicles have attained a greater diameter than 18mm with at least 50% of the remaining follicles having attained 14-16mm. To start the process of “prolonged coasting” any earlier or any later, while it would still protect against the development of OHSS, would almost certainly result in compromised egg and embryo quality with ultimate failure of the IVF cycle. Simply stated, the precise timing of initiating the process is critical. Proper implementation of PC will almost always prevent OHSS without seriously compromising egg/embryo quality.

Use of the Birth Control Pill (BCP) to launch IVF-COS.

In natural (unstimulated) as well as in cycles stimulated with fertility drugs, the ability of follicles to properly respond to FSH stimulation is dependent on their having developed FSH-responsive receptors. Pre-antral follicles (PAF) do not have such primed FSH receptors and thus cannot respond properly to FSH stimulation with gonadotropins. The acquisition of FSH receptor responsivity requires that the pre-antral follicles be exposed to FSH, for a number of days (5-7) during which time they attain “FSH-responsivity” and are now known as antral follicles (AF). These AF’s are now able to respond properly to stimulation with administered FSH-gonadotropins. In regular menstrual cycles, the rising FSH output from the pituitary gland insures that PAFs convert tor AF’s. The BCP (as well as prolonged administration of estrogen/progesterone) suppresses FSH. This suppression needs to be countered by artificially causing blood FSH levels to rise in order to cause PAF to AF conversion prior to COS commencing, otherwise pre-antral-to –antral follicle conversion will not take place in an orderly fashion, the duration of ovarian stimulation will be prolonged and both follicle and egg development may be compromised. GnRH agonists cause an immediate surge in release of FSH by the pituitary gland thus causing conversion from PAF to SAF. This is why women who take a BCP to launch a cycle of COS need to have an overlap of the BCP with an agonist. By overlapping the BCP with an agonist for a few days prior to menstruation the early recruited follicles are able to complete their developmental drive to the AF stage and as such, be ready to respond appropriately to optimal ovarian stimulation. Using this approach, the timing of the initiation of the IVF treatment cycle can readily and safely be regulated and controlled by varying the length of time that the woman is on the BCP.

Since optimizing follicular response to COS requires that prior to stimulation with gonadotropins, FSH-induced conversion from PAF to AF’s first be completed and the BCP suppresses FSH, it follows when it comes to women launching COS coming off a BCP something needs to be done to cause a rise in FSH for 5-7 days prior to menstruation heralding the cycle of CO S. This is where overlapping the BCP with a GnRHa comes in. The agonist causes FSH to be released by the pituitary gland and if overlapped with the BCP for several days and this will (within 2-5 days) facilitate PAF to AF conversion…. in time to start COS with the onset of menstruation. Initiating ovarian stimulation in women taking a BCP, without doing this is suboptimal.

I strongly recommend that you visit www.SherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select.  Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

  • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
  • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
  • The Fundamental Requirements For Achieving Optimal IVF Success
  • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
  • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
  • The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
  • A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
  • Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
  • Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
  • Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
  • Optimizing Response to Ovarian Stimulation in Women with Compromised Ovarian Response to Ovarian Stimulation: A Personal Approach.
  • Egg Maturation in IVF: How Egg “Immaturity”, “Post-maturity” and “Dysmaturity” Influence IVF Outcome:
  • Commonly Asked Question in IVF: “Why Did so Few of my Eggs Fertilize and, so Many Fail to Reach Blastocyst?”
  • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
  • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
  • Staggered IVF
  • Staggered IVF with PGS- Selection of “Competent” Embryos Greatly Enhances the Utility & Efficiency of IVF.
  • Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
  • Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation
  • Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
  • IVF: Selecting the Best Quality Embryos to Transfer
  • Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
  • PGS in IVF: Are Some Chromosomally abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
  • PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
  • IVF outcome: How Does Advancing Age and Diminished Ovarian Reserve (DOR) Affect Egg/Embryo “Competency” and How Should the Problem be addressed.

 

 

______________________________________________________

ADDENDUM: PLEASE READ!!

INTRODUCING SHER FERTILITY SOLUTIONS (SFS)

Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or,  enroll online on then home-page of my website (www.SherIVF.com). 

 

PLEASE SPREAD THE WORD ABOUT SFS!

 Geoff Sher

______________________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

http://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

………………………………………………………………..

 

 

 

 

Name: Anja S

Hello, I just found out I am pregnant and I am worried about my hcg levels.

The first day of my last period was 21.2., but I usually have an early ovulation. Right now my hcg levels are 133.7, and I should be only in my third week. Is that too high? Apart from that there are no unusual symptoms. I do have an appointment with my gynecologist at the end of this week.

Thank you very much in advance!

Answer:

I do not see this as a problem !

God luck!

Geoff Sher

Name: Jule A

37 yrs old, 1.6 amh. 7 years of infertility, 4 failed IUI’s before surgery, 2 surgeries to remove endometriosis and endometriomas on both ovaries, 1 IVF completed and obtained one normal 5BB embreyo. What protocol is best for 2nd IVF cycle? Are there risks in taking the growth hormones for endo patient? Thanks!

Answer:

ENDOMETRIOSIS AND IVF

When women with infertility due to endometriosis seek treatment, they are all too often advised to first try ovarian stimulation (ovulation Induction) with intrauterine insemination (IUI) ………as if to say that this would be just as likely to result in a baby as would in vitro fertilization (IVF). Nothing could be further from reality It is time to set the record straight. And hence this communication!

Bear in mind that the cost of treatment comprises both financial and emotional components and that it is the cost of having a baby rather than cost of a procedure. Then consider the fact that regardless of her age or the severity of the condition, women with infertility due to endometriosis are several fold more likely to have a baby per treatment cycle of IVF than with IUI. It follows that there is a distinct advantage in doing IVF first, rather than as a last resort.

So then, why is it that ovulation induction with or without IUI is routinely offered proposed preferentially to women with mild to moderately severe endometriosis? Could it in part be due to the fact that most practicing doctors do not provide IVF services but are indeed remunerated for ovarian stimulation and IUI services and are thus economically incentivized to offer IUI as a first line approach? Or is because of the often erroneous belief that the use of fertility drugs will in all cases induce the release (ovulation) of multiple eggs at a time and thereby increase the chance of a pregnancy. The truth however is that while normally ovulating women (the majority of women who have mild to moderately severe endometriosis) respond to ovarian stimulation with fertility drugs by forming multiple follicles, they rarely ovulate > 1 (or at most 2) egg at a time. This is because such women usually only develop a single dominant follicle which upon ovulating leaves the others intact. This is the reason why normally ovulating women who undergo ovulation induction usually will not experience improved pregnancy potential, nor will they have a marked increase in multiple pregnancies. Conversely, non-ovulating women (as well as those with dysfunctional ovulation) who undergo ovulation induction, almost always develop multiple large follicles that tend to ovulate in unison. This increases the potential to conceive along with an increased risk multiple pregnancies.

 

So let me take a stab at explaining why IVF is more successful than IUI or surgical correction in the treatment of endometriosis-related infertility:

  1. The toxic pelvic factor: Endometriosis is a condition where the lining of the uterus (the endometrium) grows outside the uterus. While this process begins early in the reproductive life of a woman, with notable exceptions, it only becomes manifest in the 2ndhalf of her reproductive life. After some time, these deposits bleed and when the blood absorbs it leaves a visible pigment that can be identified upon surgical exposure of the pelvis. Such endometriotic deposits invariably produce and release toxins” into the pelvic secretions that coat the surface of the membrane (the peritoneum) that envelops all abdominal and pelvic organs, including the uterus, tubes and ovaries. These toxins are referred to as “the peritoneal factor”. Following ovulation, the egg(s) must pass from the ovary (ies), through these toxic secretions to reach the sperm lying in wait in the outer part the fallopian tube (s) tube(s) where, the sperm lie in waiting. In the process of going from the ovary(ies) to the Fallopian tube(s) these eggs become exposed to the “peritoneal toxins” which alter s the envelopment of the egg (i.e. zona pellucida) making it much less receptive to being fertilized by sperm. As a consequence, if they are chromosomally normal such eggs are rendered much less likely to be successfully fertilized. Since almost all women with endometriosis have this problem, it is not difficult to understand why they are far less likely to conceive following ovulation (whether natural or induced through ovulation induction). This “toxic peritoneal factor impacts on eggs that are ovulated whether spontaneously (as in natural cycles) or following the use of fertility drugs and serves to explain why the chance of pregnancy is so significantly reduced in normally ovulating women with endometriosis.
  2. The Immunologic Factor: About one third of women who have endometriosis will also have an immunologic implantation dysfunction (IID) linked to activation of uterine natural killer cells (NKa).  This will require selective immunotherapy with Intralipid infusions, and/or heparinoids (e.g. Clexane/Lovenox) that is much more effectively implemented in combination with IVF.
  3. Surgical treatment of mild to moderate endometriosis does not usually improve pregnancy potential:. The reason is that endometriosis can be considered to be a “work in progress”. New lesions are constantly developing. So it is that for every endometriotic seen there are usually many non-pigmented deposits that are in the process of evolving but are not yet visible to the naked eye and such evolving (non-visible) lesions can also release the same “toxins that compromise fertilization. Accordingly, even after surgical removal of all visible lesions the invisible ones continue to release “toxins” and retain the ability to compromise natural fertilization. It also explains why surgery to remove endometriotic deposits in women with mild to moderate endometriosis usually will fail to significantly improve pregnancy generating potential. In contrast, IVF, by removing eggs from the ovaries prior to ovulation, fertilizing these outside of the body and then transferring the resulting embryo(s) to the uterus, bypasses the toxic pelvic environment and is therefore is the treatment of choice in cases of endometriosis-related infertility.
  4. Ovarian Endometriomas: Women, who have advanced endometriosis, often have endometriotic ovarian cysts, known as endometriomas. These cysts contain decomposed menstrual blood that looks like melted chocolate…hence the name “chocolate cysts”. These space occupying lesions can activate ovarian connective tissue (stroma or theca) resulting in an overproduction of male hormones (especially testosterone). An excess of ovarian testosterone can severely compromise follicle and egg development in the affected ovary. Thus there are two reasons for treating endometriomas. The first is to alleviate symptoms and the second is to optimize egg and embryo quality. Conventional treatment of endometriomas involves surgical drainage of the cyst contents with subsequent removal of the cyst wall (usually by laparoscopy), increasing the risk of surgical complications. We recently reported on a new, effective and safe outpatient approach to treating endometriomas in women planning to undergo IVF. We termed the treatment ovarian Sclerotherapy.  The process involves; needle aspiration of the “chocolate colored liquid content of the endometriotic cyst, followed by the injection of 5% tetracycline hydrochloride into the cyst cavity. Such treatment will, more than 75% of the time result in disappearance of the lesion within 6-8 weeks. Ovarian sclerotherapy can be performed under local anesthesia or under conscious sedation. It is a safe and effective alternative to surgery for definitive treatment of recurrent ovarian endometriomas in a select group of patients planning to undergo IVF

 

 I am not suggesting that all women with infertility-related endometriosis should automatically resort to IVF. Quite to the contrary…. In spite of having reduced fertility potential, many women with mild to moderate endometriosis can and do go on to conceive on their own (without treatment). It is just that the chance of this happening is so is much lower than normal.

 

IN SUMMARY: For young ovulating women (< 35 years of age ) with endometriosis, who have normal reproductive anatomy and have fertile male partners, expectant treatment is often preferable to IUI or IVF. However, for older women, women who (regardless of their age) have any additional factor (e.g. pelvic adhesions, ovarian endometriomas, male infertility, IID or diminished ovarian reserve-DOR) IVF should be the primary treatment of choice.

_______________________________________________________

PROTOCOL SELECTION FOR IVF

The importance of the IVF stimulation protocol on egg/embryo quality cannot be overstated. This factor seems often to be overlooked or discounted by t IVF practitioners who use a “one-size-fits-all” approach to ovarian stimulation. My experience is that the use of individualized/customized COS protocols can greatly improve IVF outcome. While no one can influence underlying genetics or turn back the clock on a woman’s age, any competent IVF specialist should be able to tailor the protocol for COS to meet the individual needs of the patient.

Gonadotropins (LH and FSH), whether produced by the pituitary gland or administered by way of fertility drugs, have different “targeted” sites of action in the ovary. FSH targets cells that line the inner wall of the follicle (granulosa cells) and also form the cumulus cells that bind the egg to the inner surface of the follicle. Granulosa cells are responsible for estrogen production.

LH, on the other hand, targets the ovarian connective tissue (stroma/theca) that surrounds ovarian follicles resulting in the production of male hormones such as testosterone (predominantly), androstenedione and DHEA. These androgens are then transported to the granulosa cells of the adjacent follicles in a “bucket brigade fashion”. There FSH converts testosterone to estradiol, causing granulosa cells to multiply (proliferate) and produce estradiol, follicles to  grows and eggs to develop (ovogenesis) It follows that  ovarian androgens (mainly testosterone) is absolutely indispensable to follicle/ egg growth and development.

However, the emphasis is on a “normal” amount of testosterone. Over-exposure of the follicle to testosterone can in my opinion,  compromise egg development and lead to an increased likelihood of chromosomal irregularities (aneuploid) following LH/hCG-induced egg maturational division (meiosis) and compromise embryo “competency/quality.

Ovarian androgens can also reach the uterine lining where they sometimes will compromise estrogen receptor -induced endometrial growth and development.

A significant percentage of  older women and those who have diminished ovarian reserve (DOR) have increased LH activity is increased. Such women either over-produce LH and/or the LH produced is far more biologically active. Chronically increased LH activity leads to overgrowth of ovarian connective tissue (stroma/theca). This condition, which is often referred to as Stromal Hyperplasia or hyperthecosis can result in  excessive ovarian androgen/testosterone production and poorer egg-embryo quality/competency, Similarly, women with polycystic ovarian syndrome (PCOS), also characteristically have Stromal hyperplasia/hyperthecosis due to chronically increased LH activity. Thus they too often manifest with increased ovarian androgen production. It is therefore not surprising that “poor egg/embryo quality” is often also a feature of PCOS.

In my opinion, the over-administration of LH-containing menotropins such as Menopur, [which is comprised of roughly equal amount of FSH and   hCG ,which acts similar to LH)], to older women, women with DOR and those who have PCOS can also lead to reduced egg/embryo competency . Similarly, drugs such as clomiphene or Letrozole that cause the pituitary gland to release excessive amounts of LH, are also potentially harmful to egg development and in my opinion, are best omitted from IVF COS protocols. This is especially the case when it comes to older women and those with DOR, who in my opinion should preferably be stimulated using FSH-dominant products such as Follistim, Puregon, Fostimon and Gonal-F. 

Gonadotropin releasing hormone agonists (GnRHa): GnRHa such as Lupron, Buserelin, Superfact, Gonopeptyl etc. are often used to launch ovarian stimulation cycles. They act by causing an initial outpouring followed by a depletion of pituitary gonadotropins. This results in LH levels falling to low concentrations, within 4-7 days, thereby establishing a relatively “LH-free environment”. When GnRHa are administered for about 7 days prior to initiating gonadotropin stimulation (“long” pituitary down-regulation”), the LH depletion that will exist when COS is initiated, will usually be protective of subsequent egg development. In contrast, when the GnRHa administration commences along with the initiation of gonadotropin therapy, there will be a resultant immediate surge in the release of pituitary LH with  the potential to increase ovarian testosterone to egg-compromising levels , from the outset of COS. This, in my opinion could be particularly harmful when undertaken in older women and those who have DOR.

GnRH-antagonists such as Ganirelix, Cetrotide and Orgalutron, on the other hand, act very rapidly (within hours) to block pituitary LH release. The purpose in using GnRH antagonists is to prevent the release of LH during COS. In contrast, the LH-lowering effect of GnRH agonists develops over a number of days.

GnRH antagonists are traditionally given, starting after  5th -7th day of gonadotropin stimulation. However, when this is done in older women and those (regardless of age) who have DOR, LH-suppression might be reached too late to prevent the deleterious effect of excessive ovarian androgen production on egg development in the early stage of ovarian stimulation. This is why, it is my preference to administer GnRH-antagonists, starting at the initiation of gonadotropin administration.

Preferred Protocols for Controlled Ovarian Stimulation (COS):

  • Long GnRH Agonist Protocols: The most prescribed protocol for agonist/gonadotropin administration is the so-called “long protocol”. An agonist (usually, Lupron) is given either in a natural cycle, starting 5-7 days prior to menstruation or is overlapped with the BCP for two days whereupon the latter is stopped and the Lupron, continued until menstruation ensues. The agonist precipitates a rapid rise in FSH and LH level, which is rapidly followed by a precipitous decline in the blood level of both, to near zero. This is followed by uterine withdrawal bleeding (menstruation) within 5-7 days of starting the agonist treatment, whereupon gonadotropin treatment is initiated (preferably within 7-10 days of the onset of menses) while daily Lupron injections continue, to ensure a relatively “low LH- environment”. Gonadotropin administration continues until the hCG trigger.
  • Short (“Flare”) GnRH-agonist (GnRHa) Protocol: Another GnRHa usage for COS is the so called “(micro) flare protocol”. This involves initiating gonadotropin therapy commensurate with initiation of gonadotropin administration. The supposed objective is to deliberately allow Lupron to elicit an initial surge (“flare”) in pituitary FSH release in order to augment FSH administration by increased FSH production. Unfortunately, this “springboard effect” constitutes “a double-edged sword”. While it indeed increases the release of FSH, it at the same time causes a surge in LH release. The latter can evoke excessive ovarian stromal/thecal androgen production which could potentially compromise egg quality, especially when it comes to older women and women with DOR. I am of the opinion that by evoking an exaggerated ovarian androgen response, such “(micro) flare protocols” can harm egg/embryo quality and reduce IVF success rates, especially when it comes to COS in older women, and in women with diminished ovarian reserve. Accordingly, I do not prescribe such protocols to my IVF patients
  • Long-Agonist/Antagonist Conversion Protocol (A/ACP):With a few (notable) exceptions I preferentially advocate this protocol for many of my patients. With the A/ACP, as with the long protocol (see above) the woman again prepares to launch her stimulation cycle by taking a BCP for at least ten days before overlapping with an agonist such as Lupron. However, when about 5-7 days later her menstruation starts, she supplants the agonist with a with 250 mcg) of an antagonist (e.g. Ganirelix, Orgalutron or Cetrotide). Within a few days of this switch-over, gonadotropin stimulation is commenced. Both the antagonist and the gonadotropins are then continued until the hCG trigger. The purpose in switching from agonist to antagonist is to intentionally allow only a very small amount of the woman’s own pituitary LH to enter her blood and reach her ovaries, while at the same time preventing a large amount of LH from reaching her ovaries. This is because while a small amount of LH is essential to promote and optimize FSH-induced follicular growth and egg maturation, a large concentration of LH can trigger over-production of ovarian stromal testosterone, with an adverse effect of follicle/egg/embryo quality. Moreover, since testosterone also down-regulates estrogen receptors in the endometrium, an excess of testosterone can also have an adverse effect on endometrial growth. Also, since agonists might suppress some ovarian response to the gonadotropin stimulation, antagonists do not do so. It is for this reason that the A/ACP is so well suited to older women and those with some degree of diminished ovarian reserve.
  • Agonist/antagonist conversion protocol with estrogen priming:Patients start their treatment cycle on a combined (monophasic) birth control pill-BCP (e.g., Marvelon, Desogen, Orthonovum 135; Low-Estrin…etc.)  for at least 8-10 days (depending on individual circumstances), before commencing controlled ovarian stimulation for IVF. With this approach, a GnRH agonist (e.g. Lupron/Superfact/Buserelin/Decapeptyl etc.) is continued until menstruation ensues (usually 5-7 days after commencement of the GnRH-agonist). At this point, the GnRH-agonist is SUPPLANTED with 250mcg GnRH antagonist (e.g. Ganirelix/Cetrotide, Orgalutron) and daily estradiol(E2) “priming” commences using either E2 skin-patches or intramuscular estradiol valerate (Delestrogen) injections, twice weekly while continuing the administration of the GnRH antagonist. Seven (7) days after commencing the E2 skin patches or intramuscular Delestrogen, daily injections of recombinant FSH-(e.g., Follistim/Gonal-F/Puregon)  + menotropin (e.g., Menopur)  therapy begins.. This is continued at a modified dosage, along with E2 patches or Delestrogen injections) until the “hCG trigger”. The egg retrieval is performed 36 hours later.

There are a few potential drawback to the use of the A/ACP. We have learned that prolonged use of a GnRH antagonist throughout the ovarian stimulation process can compromise the predictive value of serial plasma E2 measurements to evaluate follicle growth and development. It appears that when the antagonist is given throughout stimulation, the blood E2 levels tend to be significantly lower than when the agonist alone is used or where antagonist treatment is only commenced 5-7 days into the ovarian stimulation process. The reason for this is presently unclear. Accordingly, when the A/ACP is employed, we rely more on follicle size monitoring than on serial blood E2 trends to assess progress.

Also, younger women (under 30 years) and women with absent, irregular or dysfunctional ovulation, and those with polycystic ovarian syndrome are at risk of developing life-threatening Severe Ovarian Hyperstimulation Syndrome (OHSS). The prediction of this condition requires daily access to accurate blood E2 levels. Accordingly, we currently tend to refrain from prescribing the A/ACP in such cases, preferring instead use the “standard long-protocol” approach.

  • Short-GnRH antagonist protocols:The use of GnRH antagonists as currently prescribed in ovarian stimulation cycles (i.e. the administration of 250mcg daily starting on the 6th or 7th day of stimulation with gonadotropins) may be problematic, especially in women over 39 yrs., women with diminished ovarian reserve (i.e. “poor responders” to gonadotropins), and women with PCOS. Such women tend to have higher levels of LH to start with and as such the initiation of LH suppression with GnRH antagonists so late in the cycle (usually on day 6-7) of stimulation fails to suppress LH early enough to avoid compromising egg development. This can adversely influence egg/embryo quality and endometrial development. As is the case with the “microflare” approach (see above) the use of GnRH antagonist protocols in younger women who have normal ovarian reserve, is acceptable. Again, for reasons of caution, and because I see no benefit in doing so, I personally never prescribe this approach for my patients. Presumably, the reason for the suggested mid-follicular initiation of high dose GnRH antagonist is to prevent the occurrence of the so called “premature LH surge”, which is known to be associated with “follicular exhaustion” and poor egg/embryo quality. However the term “premature LH surge” is a misnomer and the concept of this being a “terminal event” or an isolated insult is erroneous. In fact, the event is the culmination (end point) of the progressive escalation in LH (“a staircase effect”) which results in increasing ovarian stromal activation with commensurate growing androgen production. Trying to improve ovarian response and protect against follicular exhaustion by administering GnRH antagonists during the final few days of ovarian stimulation is like trying to prevent a shipwreck by removing the tip of an iceberg.
  • Short-GnRH-agonist (“micro-flare”) protocols:Another approach to COH is by way of so-called “microflare protocols”. This involves initiating gonadotropin therapy simultaneously with the administration of GnRH agonist. The intent is to deliberately allow Lupron to affect an initial surge (“flare”) in pituitary FSH release to augment ovarian response to the gonadotropin medication. Unfortunately, this approach represents “a double-edged sword” as the resulting increased release of FSH is likely to be accompanied by a concomitant (excessive) rise in LH levels that could evoke excessive production of male hormone by the ovarian stroma. The latter in turn could potentially compromise egg quality, especially in women over 39 years of age, women with diminished ovarian reserve, and in women with polycystic ovarian syndrome (PCOS) – all of whose ovaries have increased sensitivity to LH. In this way, “microflare protocols” can potentially hinder egg/embryo development and reduce IVF success rates. While microflare protocols usually are not harmful in younger women and those with normal ovarian reserve, I personally avoid this approach altogether for safety’s sake. The follicles/eggs of women on GnRH-agonist “micro-flare protocols” can be exposed to exaggerated agonist-induced LH release, (the “flare effect”) while the follicles/eggs of women, who receive GnRH antagonists starting 6-8 days following the initiation of stimulation with gonadotropins can likewise be exposed to pituitary LH-induced ovarian male hormones (especially testosterone). While this is not necessarily problematic in younger women and those with adequate ovarian reserve (“normal responders”) it could be decidedly prejudicial in “poor responders” and older women where there is increased follicle and egg vulnerability to high local male hormone levels.
  • The “Trigger Shot”- A Critical Decision:The egg goes through maturational division (meiosis) during the 36-hour period that precedes ovulation or retrieval. The efficiency of this process will determine the outcome of reproduction. It follows that when it comes to ovulation induction, aside from selecting a suitable protocol for COS one of the most important decisions the clinician has to make involves choosing and implementing with logic and precision, the “trigger shot” by which to facilitate meiosis.
    • Urinary versus recombinant hCG:Until quite recently, the standard method used to initiate the “trigger shot” was through the administration of 10,000 units of hCGu. More recently, a recombinant form of hCGr (Ovidrel) was introduced and marketed in 250 mcg doses. But clinical experience strongly suggests that 250 mcg of Ovidrel is most likely not equivalent in biological potency to 10,000 units of hCG. It probably at best only has 60%of the potency of a 10,000U dose of hCGu and as such might not be sufficient to fully promote meiosis, especially in cases where the woman has numerous follicles. For this reason, I firmly believe that when hCGr is selected as the “trigger shot” the dosage should be doubled to 500 mcg, at which dosage it will probably have an equivalent effect on promoting meiosis as would 10,000 units of hCGu.
    • The dosage of hCG used: Some clinicians, when faced with a risk of OHSS developing will deliberately elect to reduce the dosage of hCG administered as a trigger in the hope that by doing so, the risk of developing critical OHSS will be lowered. It is my opinion that such an approach is not optimal because a low dose of hCG (e.g., 5000 units hCGu or 25omcg hCGr) is likely inadequate to optimize the efficiency of meiosis, particularly when it comes to cases such as this where there are numerous follicles. In my opinion a far better approach is to use a method that I first described in 1989, known as “prolonged coasting”
    • Use of hCG versus a GnRHa(e.g., Lupron/Buserelin/Superfact) as the trigger shot: It has been suggested that the use of an “agonist ( Lupron) trigger” in women at risk of developing severe ovarian hyperstimulation syndrome (OHSS) could potentially reduce the risk of the condition becoming critical and thereby placing the woman at risk of developing life-endangering complications. It is for this reason that many RE’s prefer to trigger meiosis in this way (using an agonist-Lupron) rather than through the use of hCG. The agonist promptly causes the woman’s pituitary gland to expunge a large amount of LH over a short period of time and it is this LH “surge” that triggers meiosis. The problem with this approach, in my opinion, is that it is hard to predict how much LH will be released in by the pituitary gland of a given patient receiving an agonist trigger shot, especially if the woman was down-regulated using an agonist, or in cases where an antagonist was used to block pituitary LH release. For this reason, I personally prefer to use hCGu for the trigger, even in cases of ovarian hyperstimulation, with one important proviso…that she underwent “prolonged coasting” in order to reduce the risk of critical OHSS prior to the 10,000 unit hCGu “trigger”.
    • Combined use of hCG +GnRHa; This approach is preferable to the use of a GnRHa, alone. However, in my opinion is inferior to the appropriate and correct use of hCG, alone.
    • The timing of the trigger shot to initiate meiosis:This should coincide with the majority of ovarian follicles being >15 mm in mean diameter with several follicles having reached 18-22 mm. Follicles of larger than 22 mm will usually harbor overdeveloped eggs which in turn will usually fail to produce good quality eggs. Conversely, follicles less than 15 mm will usually harbor underdeveloped eggs that are more likely to be aneuploid and incompetent following the “trigger”.

Severe Ovarian Hyperstimulation Syndrome (OHSS) and prolonged Coasting”

OHSS is a life-endangering condition that usually occurs in women undergoing COS where the blood E2 level rises to above 4,000pg/ml. The risk escalates to greater than 80% in cases where the E2 level rises above 6,000pg/ml. It rarely occurs in normally ovulating women or older (>39Y) women and is more commonly encountered in:

  • Young women (under 30y) who have a high ovarian reserve(based upon basal FSH and AMH.
  • Women with polycystic Ovarian Syndrome (PCOS)
  • Non-PCOS women who do not ovulate spontaneously

The treating physician should be alerted to the possibility of hyperstimulation when encountering a woman who develops >25 ovarian follicles of 14mm-16mm in mean diameter, in association with a blood E2 level of above 2,5000pg/ml prior to the hCG “trigger”.

OHSS is a self-limiting condition. Its development is linked to the effect of hCG and thus does not occur until the “hCG trigger” is administered. In fact, there is virtually no risk of OHSS until the hCG “trigger” is administered.

Prolonged Coasting” is a procedure I introduced in 1991. It involves abruptly stopping gonadotropin therapy while continuing to administer the GnRH agonist (e.g. Lupron, Buserelin) deferring the hCG “trigger” until the woman is out of risk (as evidenced by a fall in plasma estradiol level to below 2,500pg/ml).

It is important that “prolonged coasting” be initiated as soon as two or more follicles have attained a greater diameter than 18mm with at least 50% of the remaining follicles having attained 14-16mm. To start the process of “prolonged coasting” any earlier or any later, while it would still protect against the development of OHSS, would almost certainly result in compromised egg and embryo quality with ultimate failure of the IVF cycle. Simply stated, the precise timing of initiating the process is critical. Proper implementation of PC will almost always prevent OHSS without seriously compromising egg/embryo quality.

Use of the Birth Control Pill (BCP) to launch IVF-COS.

In natural (unstimulated) as well as in cycles stimulated with fertility drugs, the ability of follicles to properly respond to FSH stimulation is dependent on their having developed FSH-responsive receptors. Pre-antral follicles (PAF) do not have such primed FSH receptors and thus cannot respond properly to FSH stimulation with gonadotropins. The acquisition of FSH receptor responsivity requires that the pre-antral follicles be exposed to FSH, for a number of days (5-7) during which time they attain “FSH-responsivity” and are now known as antral follicles (AF). These AF’s are now able to respond properly to stimulation with administered FSH-gonadotropins. In regular menstrual cycles, the rising FSH output from the pituitary gland insures that PAFs convert tor AF’s. The BCP (as well as prolonged administration of estrogen/progesterone) suppresses FSH. This suppression needs to be countered by artificially causing blood FSH levels to rise in order to cause PAF to AF conversion prior to COS commencing, otherwise pre-antral-to –antral follicle conversion will not take place in an orderly fashion, the duration of ovarian stimulation will be prolonged and both follicle and egg development may be compromised. GnRH agonists cause an immediate surge in release of FSH by the pituitary gland thus causing conversion from PAF to SAF. This is why women who take a BCP to launch a cycle of COS need to have an overlap of the BCP with an agonist. By overlapping the BCP with an agonist for a few days prior to menstruation the early recruited follicles are able to complete their developmental drive to the AF stage and as such, be ready to respond appropriately to optimal ovarian stimulation. Using this approach, the timing of the initiation of the IVF treatment cycle can readily and safely be regulated and controlled by varying the length of time that the woman is on the BCP.

Since optimizing follicular response to COS requires that prior to stimulation with gonadotropins, FSH-induced conversion from PAF to AF’s first be completed and the BCP suppresses FSH, it follows when it comes to women launching COS coming off a BCP something needs to be done to cause a rise in FSH for 5-7 days prior to menstruation heralding the cycle of CO S. This is where overlapping the BCP with a GnRHa comes in. The agonist causes FSH to be released by the pituitary gland and if overlapped with the BCP for several days and this will (within 2-5 days) facilitate PAF to AF conversion…. in time to start COS with the onset of menstruation. Initiating ovarian stimulation in women taking a BCP, without doing this is suboptimal.

I strongly recommend that you visit www.SherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select.  Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

  • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
  • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
  • The Fundamental Requirements For Achieving Optimal IVF Success
  • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
  • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
  • The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
  • A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
  • Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
  • Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
  • Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
  • Optimizing Response to Ovarian Stimulation in Women with Compromised Ovarian Response to Ovarian Stimulation: A Personal Approach.
  • Egg Maturation in IVF: How Egg “Immaturity”, “Post-maturity” and “Dysmaturity” Influence IVF Outcome:
  • Commonly Asked Question in IVF: “Why Did so Few of my Eggs Fertilize and, so Many Fail to Reach Blastocyst?”
  • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
  • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
  • Staggered IVF
  • Staggered IVF with PGS- Selection of “Competent” Embryos Greatly Enhances the Utility & Efficiency of IVF.
  • Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
  • Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation
  • Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
  • IVF: Selecting the Best Quality Embryos to Transfer
  • Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
  • PGS in IVF: Are Some Chromosomally abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
  • PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
  • IVF outcome: How Does Advancing Age and Diminished Ovarian Reserve (DOR) Affect Egg/Embryo “Competency” and How Should the Problem be addressed.

 

ADDENDUM: PLEASE READ!!

INTRODUCING SHER FERTILITY SOLUTIONS (SFS)

Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

 

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or,  enroll online on then home-page of my website (www.SherIVF.com). 

____________________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

http://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

………………………………………………………………..

 

 

 

 

 

 

 

 

Name: Ian M

Hello Dr. Sher,

We transferred a single 5-day blastocyst January 30th. Our first hcg level was 1005 miu/ml at 14 days post-transfer, and 2nd hcg was 2200 miu/ml at 16 days. Two fetuses were present when we went in for our first ultrasound 5 weeks after our transfer on March 7th (~7 weeks 5 days pregnant if I’ve calculated that right). However, a heart beat was only detected in one fetus that seemed on track developmentally. The other fetus without a heart beat was about a week or so behind.

Our understanding is that these would have been monochorionic twins. While we’re sad about the loss, we are trying to stay hopeful that the remaining fetus has a good shot at progressing to term. Are you aware of any risks to a fetus that loses its monochorionic twin early in pregnancy? Any thoughts on potential outcomes? We’re not sure if we should be hopeful or manage our expectations. We’ve another ultrasound booked next week, but the wait is distressing.

Thanks so much for what you do on here. We’ve been on a long journey trying to overcome primary infertility and your previous insights have given us great comfort in other moments of trouble.

Thanks again,
Ian

Answer:

In my opinion, the chance that the 2nd twin will be OK, is good!

G-d bless and good luck!

Geoff Sher

Name: Sofia G

After having had several failed implantations of healthy embryos, I did blood tests and obtained very high values of Factor X activity, clothing, and Factor XII activity clothing. What does it mean and how does it affect me? What’s the best treatment? any side effects?

Answer:

I really don’t think this is likely to be a problem.

Geoff Sher

____________________________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

http://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

………………………………………………………………..