Ask Our Doctors

Dear Patients,

I created this forum to welcome any questions you have on the topic of infertility, IVF, conception, testing, evaluation, or any related topics. I do my best to answer all questions in less than 24 hours. I know your question is important and, in many cases, I will answer within just a few hours. Thank you for taking the time to trust me with your concern.

– Geoffrey Sher, MD

Fill in the following information and we’ll get back to you.

Name: Yael G

Hello Dr.Sher,
I am interested to know what your thoughts are on my situation. I am starting my first egg retrieval in the upcoming months and I’m 40 years old, with lean pcos (5’7 and 130 lbs) and with an AMH of 46.5 pmol/l. I know I am at a high risk of OHSS. What would you suggest medication wise for stims? My doc is thinking rekovelle and menopur with Lupron trigger.
Also would you suggest a mini ivf? And most importantly, if I did develop OHSS…would I be at an increased risk of cancer of the ovaries later?

Answer:

Polycystic ovary syndrome (PCOS) is a common hormonal system disorder among women affecting between 5% and 10% of women of reproductive age worldwide.  Women with PCOS may have enlarged ovaries that contain multiple small collections of fluid (subcapsular microcysts) that are arranged like a “string of pearls” immediately below the ovarian surface (capsule).interspersed by an overgrowth of ovarian connective tissue (stroma). The condition is characterized by abnormal ovarian function (irregular or absent periods, abnormal or absent ovulation and infertility, androgenicity (increased body hair or hirsutism, acne) and increased body weight –body mass index or BMI.

 

Women with PCOS are at increased risk that ovarian stimulation with gonadotropins will result in the, of development of severe ovarian hyperstimulation syndrome (OHSS), a life-endangering condition that is often accompanied by a profound reduction in egg quality. Such eggs will upon fertilization often yield an inordinately high percentage of “incompetent” embryos which have a reduced potential to propagate viable pregnancies.

Concern and even fear that their PCOS patients will develop of OHSS often leads the treating RE to take measures aimed at reducing these risks. In this regard, it is my opinion that the most important consideration is the selection and proper implementation of an individualized or customized   ovarian stimulation protocol.

What follows is a critical assessment of methods to prevent OHSS and/or limit its severity:

  1. PROLONGED COASTING…my preferred approach: My preferred approach is to use a long pituitary down-regulation protocol coming off the BCP which during the last 3 days is overlapped with the agonist, Lupron/Buserelin/Superfact. The BCP is intended to lower LH and thereby reduce stromal activation (hyperthecosis) in the hope of controlling LH-induced ovarian androgen (predominantly, testosterone) production and release. I then stimulate my PCOS patients using a low dosage of recombinant FSH-(FSHr) such as Follistim/Gonal-F/Puregon. On the 3rd day of such stimulation a smidgeon of LH/hCG (Luveris/Menopur) is added. Thereupon, starting on day 7 of ovarian stimulation, I perform serial blood estradiol (E2) and ultrasound follicle assessments, watching for the number and size of the follicles and the blood estradiol concentration [E2]. I keep stimulating (regardless of the [E2] until 50% of all follicles reach 14mm. At this point, provided the [E2] reaches at least >2,500pg/ml, I stop the agonist as well as gonadotropin stimulation and track the blood E2 concentration daily. The [E2] will almost invariably increase for a few days. I closely monitor the [E2] as it rises, plateaus and then begins to decline. As soon as the [E2] drops below 2500pg/ml (and not before then), I administer a “trigger” shot of 10,000U Profasi/ Novarel/Pregnyl or 500mcg Ovidrel/Ovitrel. This is followed by an egg retrieval, performed 36 hours later. Fertilization is accomplished using intracytoplasmic sperm injection (ICSI) because “coasted” eggs usually have little or no cumulus oophoris enveloping them and eggs without a cumulus will not readily fertilize naturally. Moreover, they also tend to have a “hardened” envelopment (zona pellucida), making spontaneous fertilization problematic in many cases.  All fertilized eggs are cultured to the blastocyst stage  (up to day 5- 6 days) and thereupon are either vitrified and preserved for subsequent transfer in later hormone replacement cycles or (up to 2) blastocysts are transferred to the uterus, transvaginally under transabdominal ultrasound guidance. The success of this approach depends on precise timing of the initiation and conclusion of “prolonged coasting”. If started too early, follicle growth will arrest and the cycle will be lost. If commenced too late, too many follicles will be post-mature/cystic (>22mm) and as such will usually harbor abnormal or dysmature eggs.  Use of “Coasting” almost always prevents the development of severe OHSS, optimizes egg/embryo quality and avoids unnecessary cycle cancellation. If correctly implemented, the worst you will encounter is moderate OHSS and this too is relatively uncommon.
  2. MULTIPLE FOLLICLE ASPIRATION: In some cases, in spite of best effort, you inadvertently find mean follicle size to exceed 16mm, thereby leaving too little time to implement “coasting”. On other occasions, “coasting” fails to effectively lower the [E2} below 2,500pg/ml within 3 days. In such case the number of developing follicles can effectively and drastically reduced (culled) through selective transvaginal aspiration prior to initiating the “trigger” with 10,000U hCG. This will almost invariably be accompanied by a rapid and significant drop in the plasma estradiol concentration along with a drastic reduction in the risk of OHSS occurring without significantly compromising egg/embryo quality. Upon completing surgical follicular reduction, the surviving follicles can be allowed to continue their full development, at which point the hCG “trigger” can be implemented. The drawback associated with this approach is that it unfortunately interjects an additional surgical intervention into an already complex and stressful situation.
  3. EMBRYO FREEZING AND DEFERMENT OF EMBRYO TRANSFEDR (ET): OHSS is always a self-limiting condition. In the absence of continued exposure to hCG, symptoms and signs as well as the risk of severe complications will ultimately abate. Thus, in the absence of pregnancy, all symptoms, signs and risks associated with OHSS will disappear within about 10-14 days of the hCG trigger. Conversely, since early pregnancy is always accompanied by a rapid and progressive rise in hCG , the severity of OHSS will increase until about the 9th or tenth gestational week whereupon a transition from ovarian to placental hormonal dominance occurs, the severity of OHSS rapidly diminishes and the patient will be out of risk. Accordingly, in cases where in spite of best effort to prevent OHSS, the woman develops symptoms and signs of progressive overstimulation prior to planned ET, all the blastocysts should be vitrified and cryostored for FET in a subsequent hormone replacement cycle. In this way women with OHSS can be spared the risk of the condition spiraling out of control.
  4. TRIGGERING WITH LOW DOISAGE hCG; Because of the fact that hCG augments the development of OHSS, many RE’s prefer to use a reduced dosage of hCG for the “trigger. This is either done by administering 5,000U (half the traditional dosage) or by administering, a 250mcg (rather than 500mcg) of DNA recombinant form of hCGr (Ovidrel/Ovitrel) in the hope that by doing so the risk of critical OHSS developing will be lowered. While this indeed might be true, it is my opinion, that the reduced dosage is usually insufficient to optimize the efficiency of egg meiosis, especially when there are so many follicles present. Thus, while the use of a reduced “trigger” dosage of hCG might well reduce the risk and occurrence of OHSS-related life-endangering complications, the price to be paid is reduced egg quality/”competency”.
  5. “TRIGGERING” WITH A GnRH AGONIST (E.G. “LUPRON/BUSERELIN): More recently, an increasing number of RE’s are triggering egg maturation by way of injecting  an agonist (Lupron/Buserelin/Superfact)  to initiate the patient’s own pituitary gland to release a large amount of LH.  The idea is to mimic what happens in natural cycles to promote egg maturation (meiosis) and ovulation, namely to have the agonist cause a “surge” in the release of body’s own pituitary LH to trigger egg meiosis (maturation) .But the amount of LH released in by the pituitary gland is often insufficient to optimize meiotic egg maturation and thus, while this approach also lowers the risk of OHSS it again comes at the expense of egg quality/competency.

 

A word of caution: I do not use long term administration of antagonists (Ganirelix/Cetrotide/Orgalutron), such as with the agonist/antagonist conversion protocol (A/ACP) in high responders whom are at risk of developing OHSS prolonged in-cycle administration of  because it can interfere with the E2  assay (often causing the value to be understated), and serial measurement of E2 is a vital part of monitoring patients undergoing “coasting”

_________________________________________________________________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

………………………………………………………………..

Name: Lisa-Marie E

Hi Dr Sher

Thank you for your answer to my previous question. I wanted to ask your opinion on PGT-A testing. A new study has cast doubts on the effectiveness of this testing: https://www.nytimes.com/2022/04/20/health/pgta-ivf-pregnancy-test.html

And some doctors seems against it, especially for women with a poor prognosis (women older than 35 for example).

What is your opinion on this test? Should I, as a 39 year old, undergo the testing? If I do, I can only afford 1 round of IVF. Without the PGT-A test, I can afford 2. Would love your take on this 🙂

Have a lovely day
Best wishes

Answer:

Human embryo development occurs through a process that encompasses reprogramming, sequential cleavage divisions and mitotic chromosome segregation and embryonic genome activation. Chromosomal abnormalities may arise during germ cell and/or preimplantation embryo development and represents a major cause of early pregnancy loss. About a decade ago, I and my associate, Levent Keskintepe PhD were the first to introduce full embryo karyotyping (identification of all 46 chromosomes) through preimplantation genetic sampling (PGS) as  a method by which to selectively transfer only euploid embryos (i.e. those that have a full component of chromosomes) to the uterus. We subsequently reported on a 2-3-fold improvement in implantation and birth rates as well as a significant reduction in early pregnancy loss, following IVF. Since then PGS has grown dramatically in popularity such that it is now widely used throughout the world.

Many IVF programs that offer PGS services, require that all participating patients consent to all their aneuploid embryos (i.e. those with an irregular quota of chromosomes) be disposed of. However,  growing evidence  suggests  that following embryo transfer, some aneuploid embryos will in the process of ongoing development,  convert to the euploid state (i.e. “autocorrect”) and then go on to develop into chromosomally normal offspring. In fact, I am personally aware of several such cases having occurred in my own practice. So clearly, summarily discarding  all aneuploid embryos as a matter of routine  we are sometimes destroying  some embryos that might otherwise have “autocorrected” and gone on to develop into  normal offspring. Thus by discarding aneuploid embryos the possibility exists that we could be denying some women the opportunity of having a baby. This creates a major ethical and moral dilemma for those of us that provide the option of PGS to our patients. On the one hand, we strive “to avoid knowingly doing harm” (the Hippocratic Oath) and as such would prefer to avoid or minimize the risk of miscarriage and/or chromosomal birth defects and on the other hand we would not wish to deny patients with aneuploid embryos, the opportunity to have a baby.

 

The basis for such embryo “autocorrection” lies in the fact that some embryos found through PGS-karyotyping to harbor one or more aneuploid cells (blastomeres) will often also harbor chromosomally normal (euploid) cells (blastomeres). The coexistence of both aneuploid and euploid cells coexisting in the same embryo is referred to as “mosaicism.”

It is against this background, that an ever-increasing number of IVF practitioners, rather than summarily discard PGS-identified aneuploid embryos are now choosing to cryobanking (freeze-store) certain of them, to leave open the possibility of ultimately transferring them to the uterus. In order to best understand the complexity of the factors involved in such decision making, it is essential to understand the causes of embryo aneuploidy of which there are two varieties:

 

  1. Meiotic aneuploidy” results from aberrations in chromosomal numerical configuration that originate in either the egg (most commonly) and/or in sperm, during preconceptual maturational division (meiosis). Since meiosis occurs in the pre-fertilized egg or in and sperm, it follows that when aneuploidy occurs due to defective meiosis, all subsequent cells in the developing embryo/blastocyst/conceptus inevitably will be aneuploid, precluding subsequent “autocorrection”. Meiotic aneuploidy will thus invariably be perpetuated in all the cells of the embryo as they replicate. It is a permanent phenomenon and is irreversible. All embryos so affected are thus fatally damaged. Most will fail to implant and those that do implant will either be lost in early pregnancy or develop into chromosomally defective offspring (e.g. Down syndrome, Edward syndrome, Turner syndrome).
  2. Mitotic aneuploidy (“Mosaicism”) occurs when following fertilization and subsequent cell replication (cleavage), some cells (blastomeres) of a meiotically normal (euploid) early embryo mutate and become aneuploid. This is referred to as “mosaicism”. Thereupon, with continued subsequent cell replication (mitosis) the chromosomal make-up (karyotype) of the embryo might either comprise of predominantly aneuploid cells or euploid cells. The subsequent viability or competency of the conceptus will thereupon depend on whether euploid or aneuploid cells predominate. If in such mosaic embryos aneuploid cells predominate, the embryo will be “incompetent”). If (as is frequently the case) euploid cells prevail, the mosaic embryo will likely be “competent” and capable of propagating a normal conceptus.

Since some mitotically aneuploid (“mosaic”) embryos can, and indeed do “autocorrect’ while meiotically aneuploid embryos cannot, it follows that an ability to reliably differentiate between these two varieties of aneuploidy would potentially be of considerable clinical value. The recent introduction of a variety of preimplantation genetic screening (PGS) known as next generation gene sequencing (NGS) has vastly improved the ability to reliably and accurately karyotype embryos and thus to diagnose embryo “mosaicism”.

Most complex aneuploidies are meiotic in origin and will thus almost invariably fail to propagate viable pregnancies. The ability of mosaic embryos to autocorrect is influenced by stage of embryo development in which the diagnosis is made, which chromosomes are affected, whether the aneuploidy involves a single chromosome (simple) or involves 3 or more chromosomes (complex), and the percentage of cells that are aneuploid. Many embryos diagnosed as being mosaic prior to their development into blastocysts (in the cleaved state), subsequently undergo autocorrection to the euploid state (normal numerical chromosomal configuration) as they develop to blastocysts in the Petri dish. This is one reason why “mosaicism” is more commonly detected in early embryos than in blastocysts. Embryos with segmental mosaic aneuploidies, i.e. the addition (duplication) or subtraction (deletion), are also more likely to autocorrect.  Finally, the lower the percentage of mitotically aneuploid (mosaic) cells in the blastocyst the greater the propensity for autocorrection and propagation of chromosomally normal (euploid) offspring. A blastocyst with <30% mosaicism could yield a 30% likelihood of a healthy baby rate with 10-15% miscarriage rate, while with >50% mosaicism the baby rate is roughly halved and the miscarriage rate double.

 

 

As stated, the transfer of embryos with autosomal meiotic trisomy, will invariably result in failed implantation, early miscarriage or the birth of a defective child. Those with autosomal mitotic (“mosaic”) trisomies, while having the ability to autocorrect in-utero and result in the birth of a healthy baby can, depending on the percentage of mosaic (mitotically aneuploid) cells present, the number of aneuploid chromosomes and the type of mosaicism (single or segmental) either autocorrect and propagate a normal baby, result in failed implantation, miscarry or cause a birth defect (especially with trisomies 13, 18 or 21). This is why when it comes to giving consideration to transferring trisomic embryos, suspected of being “mosaic”, I advise patients to undergo prenatal genetic testing once pregnant and to be willing to undergo termination of pregnancy in the event of the baby being affected. Conversely, when it comes to meiotic autosomal monosomy, there is almost no chance of a viable pregnancy. in most cases implantation will fail to occur and if it does, the pregnancy will with rare exceptions, miscarry. “Mosaic” (mitotically aneuploid) autosomally monosomic embryos where a chromosome is missing), can and often will “autocorrect” in-utero and propagate a viable pregnancy. It is for this reason that I readily recommend the transfer of such embryos, while still (for safety sake) advising prenatal genetic testing in the event that a pregnancy results.

Given our ability to recognize “mosaicism” through karyotyping of embryos, the question arrases as to which “mosaic” embryos are capable of auto-correcting in-utero and propagating viable pregnancies. Research suggests that that virtually no autosomal monosomy embryos will propagate viable pregnancies. Thus, the transfer of such mosaic embryos is virtually risk free.  Needless to say however, in any such cases, it is essential to make full disclosure to the patient (s), and to insure the completion of a detailed informed consent agreement which would include a commitment by the patient (s) to undergo prenatal genetic testing (amniocentesis/CVS) aimed at excluding a chromosomal defect in the developing baby and/or a willingness to terminate the pregnancy should a serious birth defect be diagnosed.

 

I strongly recommend that you visit www.SherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select.  Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

  • A Fresh Look at the Indications for IVF
  • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
  • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
  • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
  • The Fundamental Requirements For Achieving Optimal IVF Success
  • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
  • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
  • Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
  • Optimizing Response to Ovarian Stimulation in Women with Compromised Ovarian Response to Ovarian Stimulation: A Personal Approach.
  • Hereditary Clotting Defects (Thrombophilia)
  • Blastocyst Embryo Transfers done 5-6 Days Following Fertilization are Fast Replacing Earlier day 2-3 Transfers of Cleaved Embryos.
  • Embryo Transfer Procedure: The “Holy Grail in IVF.
  • Timing of ET: Transferring Blastocysts on Day 5-6 Post-Fertilization, Rather Than on Day 2-3 as Cleaved Embryos.
  • IVF: Approach to Selecting the Best Embryos for Transfer to the Uterus.
  • Fresh versus Frozen Embryo Transfers (FET) Enhance IVF Outcome
  • Frozen Embryo Transfer (FET): A Rational Approach to Hormonal Preparation and How new Methodology is Impacting IVF.
  • Staggered IVF
  • Staggered IVF with PGS- Selection of “Competent” Embryos Greatly Enhances the Utility & Efficiency of IVF.
  • Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
  • Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation
  • Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
  • IVF: Selecting the Best Quality Embryos to Transfer
  • Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
  • PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
  • IVF outcome: How Does Advancing Age and Diminished Ovarian Reserve (DOR) Affect Egg/Embryo “Competency” and How Should the Problem be addressed.

 

 

___________________________________________________

ADDENDUM: PLEASE READ!!

INTRODUCING SHER FERTILITY SOLUTIONS (SFS)

Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

 

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or,  enroll online on then home-page of my website (www.SherIVF.com)

___________________________________________________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

………………………………………………………………..

 

 

Name: Mary J

Hello!
Thanks for this chance!
I am 22 years old, I made ivf (gonal f, cetrotide, menopur, trigger)
I have received 11 eggs. 6-GV, 2-M1, 3-M2.
None embryos because only 1 egg was fertilized but could not divided.
Second ivf was with lower doses of same medications,received only 3 egg and one of them fertilized. Again no embryos…
Could you give me any advice?
Please

Answer:

_

One of the commonest questions asked by patients undergoing IVF relates to the likelihood of their eggs fertilizing and the likely “quality of their embryos. This is also one of the most difficult questions to answer. On the one hand many factors that profoundly influence egg quality; such as the genetic recruitment of eggs for use in an upcoming cycle, the woman’s age and her ovarian reserve, are our outside of our control. On the other hand the protocol for controlled ovarian stimulation (COS) can also profoundly influence egg/embryo development and this is indeed chosen by the treating physician.

 First; it should be understood that the most important determinant of fertilization potential, embryo development and blastocyst generation, is the numerical chromosomal integrity of the egg (While sperm quality does play a role, in the absence of moderate to severe sperm dysfunction this is (moderate or severe male factor infertility a relatively small one). Human eggs have the highest rate of numerical chromosomal irregularities (aneuploidy) of all mammals. In fact only about half the eggs of women in their twenties or early thirties, have the required number of chromosomes (euploid), without which upon fertilization the cannot propagate a normal pregnancy. As the woman advances into and beyond her mid-thirties, the percentage of eggs euploid eggs declines progressively such that by the age of 40 years, only about one out of seven or eight are likely to be chromosomally normal and by the time she reaches her mid-forties less than one in ten of her eggs will be euploid.

 Second; embryos that fail to develop into blastocysts are almost always aneuploid and not worthy of being transferred to the uterus because they will either not implant, will miscarry or could even result in a chromosomally abnormal baby (e.g. Down syndrome). However, it is incorrect to assume that all embryos reaching the blastocyst stage will be euploid (“competent”).  ). It is true that since many aneuploid embryos are lost during development and that those failing to survive to the blastocyst stage are far more likely to be competent than are earlier (cleaved) embryos.  What is also true is that the older the woman who produces the eggs, the less likely it is that a given blastocyst will be “competent”. As an example, a morphologically pristine blastocyst derived from the egg of a 30 year old woman would have about a 50:50 chance of being euploid and a 30% chance of propagating a healthy, normal baby, while a microscopically comparable blastocyst derived through fertilization of the eggs f

While the effect of species on the potential of eggs to be euploid at ovulation is genetically preordained and nothing we do can alter this equation, there is unfortunately a lot we can (often unwittingly) do to worsen the situation by selecting a suboptimal protocol of controlled ovarian stimulation (COS). This, by creating an adverse intraovarian hormonal environment will often disrupt normal egg development and lead to a higher incidence of egg aneuploidy than otherwise might have occurred.  Older women, women with diminished ovarian reserve (DOR) and those with polycystic ovarian syndrome are especially vulnerable in this regard.

During the normal, ovulation cycle, ovarian hormonal changes are regulated to avoid irregularities in production and interaction that could adversely influence follicle development and egg quality. As an example, small amounts of androgens (male hormones such as testosterone), that are produced by the ovarian stroma (tissue surrounding ovarian follicles) during the pre-ovulatory phase of the cycle enhance late follicle development, estrogen production by the granulosa cells (that line the inner walls of follicles), and egg maturation. However, over-production of testosterone can adversely influence the same processes. It follows that COS protocols should be individualized and geared toward optimizing follicle growth and development time while avoiding excessive ovarian androgen (testosterone) production and that the hCG “trigger shot” should be carefully timed.

 In summary it is important to understand the influence species, age of the woman as well as the effect of the COS protocol can have on egg/embryo quality and thus on IVF outcome. The selection of an individualized protocol for ovarian stimulation is one of the most important decisions that the RE has to make and this becomes even more relevant when dealing with older women, those with DOR and women with PCOS. Such factors will in large part determine fertilization potential, the rate of blastocyst generation and indeed IVF outcome.

I strongly recommend that you visit www.SherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select.  Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

  • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
  • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
  • The Fundamental Requirements For Achieving Optimal IVF Success
  • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
  • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
  • The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
  • A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
  • Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
  • Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
  • Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
  • Optimizing Response to Ovarian Stimulation in Women with Compromised Ovarian Response to Ovarian Stimulation: A Personal Approach.
  • Egg Maturation in IVF: How Egg “Immaturity”, “Post-maturity” and “Dysmaturity” Influence IVF Outcome:
  • Commonly Asked Question in IVF: “Why Did so Few of my Eggs Fertilize and, so Many Fail to Reach Blastocyst?”
  • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
  • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
  • Staggered IVF
  • Staggered IVF with PGS- Selection of “Competent” Embryos Greatly Enhances the Utility & Efficiency of IVF.
  • Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
  • Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation
  • Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
  • IVF: Selecting the Best Quality Embryos to Transfer
  • Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
  • PGS in IVF: Are Some Chromosomally abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
  • PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
  • IVF outcome: How Does Advancing Age and Diminished Ovarian Reserve (DOR) Affect Egg/Embryo “Competency” and How Should the Problem be addressed.

 ______________________________________________________

ADDENDUM: PLEASE READ!!

INTRODUCING SHER FERTILITY SOLUTIONS (SFS)

Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

 If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or,  enroll online on then home-page of my website (www.SherIVF.com). 

_______________________________________________________________________

 

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

………………………………………………………………..

 

Name: Sary A

Hi doctor, I am 30 years old, I have been diagnosed as PCOS , I received 12 cycle ovulation induction by clomid and letroze ,I did not conceived, last time I did ICSI , they told me that the eggs didn’t fertilized at all and the eggs had not have any response, what’s the cause? My AMH was 8 , I received gonal F and cetrotide for the IVF protocol

Answer:

Polycystic ovary syndrome (PCOS) is a common hormonal system disorder among women affecting between 5% and 10% of women of reproductive age worldwide.  Women with PCOS may have enlarged ovaries that contain small collections of fluid — called follicles — located in each ovary as seen during an ultrasound. The condition is characterized by abnormal ovarian function (irregular or absent periods, abnormal or absent ovulation and infertility), androgenicity (increased body hair or hirsutism, acne) and increased body weight –body mass index or BMI. The ovaries of women with PCOS characteristically contain multiple micro-cysts often arranged like a “string of pearls” immediately below the ovarian surface (capsule).interspersed by an overgrowth of ovarian connective tissue (stroma).

PCOS is one of the most common causes of menstrual irregularities, infertility, and hirsutism, Despite an enormous effort to define its cause, the etiology of PCOS remains unclear, and there is no definite cure at this time. PCOS is clearly a heterogeneous disorder which often has a familial (genetic) basis. Infertility associated with PCOS has been attributed to numerous factors, including dysfunctional gonadotropin pituitary secretion, peripheral insulin resistance, elevated adrenal and/or ovarian androgen (male hormone) levels, and dysfunction of several growth factors. Women with this condition are often obese and insulin resistant. The compensatory hyperinsulinemia further stimulates ovarian androgen production which may be detrimental to egg maturation and there is a clear link between the degree of insulin resistance and anovulation. PCOS is also a significant long-term health risk for women, thus necessitating vigilance through regular annual examinations (non-insulin dependent diabetes mellitus, hypertension, hypercholesterolemia, cardiovascular disease and endometrial cancer). Whereas PCOS-related infertility is usually manageable through the use of fertility drugs, lifestyle changes (diet and exercise) remain a mainstay of long-term therapy. More recently, ovulation rates, circulating androgens, pregnancy rates and perhaps even first-trimester miscarriage rates have been shown to improve when insulin sensitizers like metformin are used to correct the underlying insulin resistance.

Most patients with PCOS are young and have excellent pregnancy rates with oral clomiphene. Those that require more aggressive treatments with injectable medications probably represent a subgroup of PCOS patients with severe ovarian dysfunction. These women often have explosive response to gonadotropins which can result in serious complications like Severe Ovarian Hyperstimulation Syndrome (OHSS…see below) and high order multiple births. In those women, the ability to perform “prolonged coasting” (see below) and selectively transfer fewer embryos during IVF offers a clear advantage over standard gonadotropin injections.

gg quality in PCOS

The potential for a woman’s eggs to undergo orderly maturation, successful fertilization and subsequent progression to “good quality embryos” is in large part genetically determined. However, the expression of such potential is profoundly susceptible to numerous influences, especially intra-ovarian hormonal changes during the pre-ovulatory phase of the cycle. Proper follicular stimulation as well as precise timing of egg maturation with LH (Luteinizing Hormone) or hCG (human chorionic gonadotropin) is crucial to optimal egg maturation, fertilization and ultimately embryo quality. Both pituitary gonadotropins, LH and FSH (follicle stimulating hormone) play a pivotal but different role in follicular development. The action of FSH is mainly directed toward granulosa cell (cells lining the inside of the follicle) proliferation and estrogen production (E2). LH, on the other hand, acts primarily on the ovarian stroma (the connective tissue that surrounds the follicle) to produce androgens. While small amounts of ovarian androgens, such as testosterone, enhance egg and follicle development, over-exposure to them can have a deleterious effect. Furthermore, excessive ovarian androgens can also compromise estrogen-induced endometrial growth and development.

Suppressing pituitary secretion of LH with gonadotropin releasing hormone (GnRH) agonists such as Lupron®, is particularly useful in PCOS. In that condition, serum LH levels are elevated, leading to stromal overgrowth, follicular arrests (so-called cysts) and high levels of androgens synthesis. It is therefore not surprising that these follicles often yield poorly developed (“immature”) eggs” at the time of egg retrieval (ET) and that “poor egg/embryo quality”, inadequate endometrial development and high miscarriage rates are common features of this condition. However, contrary to popular belief, this is not due to an intrinsic deficit in “egg quality”. Stimulation protocols geared toward optimizing follicle and egg development and avoiding over exposure to androgens correct these problems ad result in pregnancy rates similar to those of non-PCOS women. Whereas the overuse of LH-containing preparations such as Menopur® and Luveris® further aggravates this effect. In conclusion, to maximize ultimate oocyte maturation, we strongly recommend against the exclusive use of such products in PCOS patients, preferring FSH-dominant products such as Follistim®, Gonal F® or Bravelle® over a period of at least 9 days following pituitary suppression with Lupron®.

PCOS women often have a family history of diabetes and demonstrable insulin resistance (evidenced by high blood insulin levels and an abnormal 2-hour glucose tolerance test).This underlying Diabetes mellitus tendency could play a role in the development of PCOS and contribute to the development of obesity, an abnormal blood lipid profile, and a predisposition to coronary vascular disease. Women with PCOS are slightly more at risk of developing uterine, ovarian and possibly also breast cancer in later life and accordingly should be evaluated for these conditions on a more frequent basis than would ordinarily be recommended to non-PCOS women.

Most women with PCOS either do not ovulate at all or they ovulate irregularly. As a consequence thereof they in addition usually experience delayed, absent or irregular menstruation. In addition, an inordinate percentage of the eggs produced by PCOS women following ovulation induction, tend to be chromosomally abnormal (aneuploid). Rather than being due to an intrinsic egg defect being inherent in PCOS women, the poor egg quality more than likely the result of over-exposure to male  hormones (predominantly, testosterone) produced by the ovarian stroma. These two factors (ovulation dysfunction and poor egg quality) are the main reasons for the poor reproductive performance (infertility and an increased miscarriage rate) in PCOS women.

PCOS patients are at an inordinate risk of severely over-responding fertility drugs, both oral varieties (e.g. Clomiphene, Serophene & Femara) and especially the injectables (e.g. Follistim, Puregon, Gonal F, Menopur and Bravelle) by forming large numbers  ovarian follicles. This can lead to life endangering complications associated with sever ovarian hyperstimulation (OHSS). In addition PCOS women receiving fertility drugs often experience multiple ovulations putting them at  severe risk (40%+)  of high order multiple pregnancy (i.e. triplets or greater) with often devastating consequences.

VARIETIES OF POLYCYSTIC OVARIAN SYNDROME:

  • Hypothalamic-pituitary-PCOS: This is the commonest form of PCOS and is often genetically transmitted and is characteristically  associated with a blood concentration of Luteinizing Hormone (LH) that is uncharacteristically much higher than  the Follicle Stimulating Hormone (FSH) level (FSH is normally higher than the LH concentration) as well as high-normal or  blood androgen ( male) hormone  concentrations (e.g. androstenedione, testosterone and dehydroepiandrosterone -DHEA).Hypothalamic-pituitary-ovarian  PCOS is also often associated with insulin resistance and in about 40%-50% of the cases.
  • Adrenal PCOS: Here the excess of male hormones are derived from overactive adrenal glands rather than from the ovaries. Blood levels of testosterone and/or androstenedione raised but here, but here, the blood level of dehydroepiandrosterone (DHEAS) is also raised, clinching the diagnosis.
  • Severe pelvic adhesive disease secondary to severe endometriosis, chronic pelvic inflammatory disease and/or extensive pelvic surgery: Women who have this type of PCOS tend to less likely to hyperstimulate in response to ovulation induction . Their. DHEAS is also is not raised.

TREATMENT OF INFERTILITY DUE TO ASSOCIATED OVULATION DYSFUNCTION:

Hypothalamic-pituitary-/ovarian PCOS: Ovulation induction with fertility drugs such as clomiphene citrate, Letrozole (Femara) or gonadotropins, with or without intrauterine insemination (IUI) is often highly successful in establishing pregnancies in PCOS women. However, IVF is fast becoming a treatment of choice (see below).

In about 40% of cases, 3-6 months of oral Metformin (Glucophage) treatment results in a significant reduction of insulin resistance, lowering of blood androgen levels, an improvement in ovulatory function, and/or some amelioration of androgenous symptoms and signs.

Surgical treatment by “ovarian drilling” of the many small ovarian cysts lying immediately below the envelopment (capsule) of the ovaries, is often used, but is less successful than alternative non-surgical treatment and is only temporarily effective. The older form of surgical treatment, using ovarian wedge resection is rarely used any longer as it can produce severe pelvic adhesion formation.

Adrenal PCOS is treated with steroids such as prednisone or dexamethasone which over a period of several weeks will suppress adrenal androgen production, allowing regular ovulation to take place spontaneously. This is often combined with clomiphene, Letrozole and/or gonadotropin therapy to initiate ovulation.

PCOS attributable to Pelvic Adhesive Disease is one variety which often is associated with compromised ovarian reserve, a raised FSH blood level and ovarian resistance to fertility drugs. In many such cases, high dosage of gonadotropins (FSH-dominant) with “estrogen priming” will often elicit an ovarian response necessary for successful ovulation induction and/or IVF. Neither steroids nor Metformin are helpful in the vast majority of such cases.

PCOS women undergoing ovulation induction usually release multiple eggs following the hCG trigger and are thus at inordinate risk of twin or higher order multiple pregnancies. They are also at risk of developing OHSS.  Many now believe that IVF should be regarded as a primary and preferential treatment for PCOS. The reason is that it is only through this approach that the number of embryos reaching the uterus can be controlled and in this manner the risk of high-order multiples can be minimized and it is only in the course of IVF  treatment that a novel treatment method  known as “prolonged coasting” ( see below) which prevents OHSS, can be implemented

 

SEVERE OVARIAN HYPERSTIMULATION SYNDROME (OHSS):

As indicated above, there is an inordinate propensity for women with PCOS to hyper-respond to gonadotropin fertility drugs and in the process produce large numbers of ovarian follicles. If left unchecked this can lead to OHSS, a potentially life endangering condition. The onset of OHSS is signaled by the development of a large number of ovarian follicles (usually more than 25 in number). This is accompanied by rapidly rising plasma estradiol (E2) levels, often exceeding 3000pg/ml within 7 or 9 days of stimulation, often rapidly peaking above 6,000 pg/ml prior to hCG administration. When this happens, the risk of OHSS developing is above 80%.

Symptoms and signs of OHSS include: abdominal distention due to fluid collection (ascites), fluid in the chest cavity (hydrothorax), rapid weight gain (of a pound or more per day) due to tissue fluid retention, abdominal pain, lower back ache, nausea, diarrhea, vomiting, visual disturbances such as blurred vision and spots in front of the eyes (scotomata), a rapidly declining urine output, cardiovascular collapse and failure of blood to clot which sometimes results in severe bruising (echymosis) and frank bleeding.  These symptoms and signs may appear before pregnancy can be diagnosed. If pregnancy occurs, the condition is likely to worsen progressively over a period of 3-5 weeks whereupon it rapidly resolves spontaneously over a few days. If no pregnancy occurs, the symptoms and signs all disappear spontaneously within 10-12 days of the hCG injection.

When increasing fluid collection in the abdominal cavity (ascites) starts to compromise breathing raising the head of the bed rose slightly by placing a 4-6 inch block at the base of each head post and using a few additional pillows, will sometimes help ameliorate the problem. In cases where this does not help or symptoms become severe, all or most of the fluid can readily and safely be drained through t transvaginal sterile needle aspiration (vaginal paracentesis-performed once or sometimes twice a week) can be performed once or twice weekly . The problem will usually self corrects within 10-12 days of the hCG shot if pregnancy does not occur or, by the 8th week of pregnancy.

Urine output should be monitored daily to see if it drops below about 500ml a day (about two cups and a half). A chest X-ray, to evaluate for fluid collection in the chest and around the heart should be done weekly along with blood tests for hematocrit, BUN, electrolytes, creatinine, platelet count and fibrin split products (FSP). If indicated on the basis of a deteriorating clinical situation, hospitalization might be needed for close observation and if necessary, to provide intensive care.

In all case of OHSS, the ovaries will invariably be considerably enlarged. This is irrelevant to the final outcome, unless ovarian torsion (twisting of the ovary on its axis), an extremely rare complication occurs. The latter would usually require surgical emergency surgical intervention.

It is important to know that symptoms and signs of OHSS are severely aggravated by rising hCG levels. Thus such patients should not receive additional hCG injections. 

Does PCOS cause poor egg/embryo quality? It is an undeniable fact that women with PCOS undergoing IVF are commonly found to have poorly developed (“dysmorphic”) eggs, with reduced fertilization potential and yielding “poor quality embryos”. However, in the author’s opinion (which admittedly runs contrary to popular opinion), this is unlikely to be due to an intrinsic deficit in egg quality. Rather, it more likely relates to   intra-ovarian hormonal changes brought about by hyperstimulation and which compromise egg development.  This effect, in the author’s opinion, can often be significantly reduced through implementation of an individualized or customized   ovarian stimulation protocols that minimize exposure of the developing follicles and eggs to excessive LH-induced ovarian androgens. This can be best achieved by limiting the use of LH-containing gonadotropins such as Menopur through selective institution of “prolonged coasting” (see below).

In the past, the onset of OHSS, heralded by the presence of large numbers of developing ovarian follicles and rapidly rising plasma estradiol levels often led the treating physician to prematurely administer hCG in an attempt to abruptly arrest the process and prevent escalation of risk to the patient. However the premature administration of hCG, while abruptly arresting further proliferation of estrogen producing granulosa cells in the follicles, unfortunately also prematurely arrests egg development. Since the ability of an egg to achieve optimal maturation upon hCG triggering is largely predicated upon it having achieved prior optimal development, the untimely administration of hCG which triggers meiosis, probably increases the risk of numerical chromosomal abnormalities (aneuploidy) of the egg. This in turn would lead to reduced fertilization potential, poor egg/embryo quality and low embryo implantation potential.

In women with PCOS the connective tissue that surrounding the follicles (ovarian stroma) is often characteristically overgrown (stromal hyperplasia). It is the stroma that produces androgens (mainly testosterone) in response to LH. It is this, coupled with the fact that PCOS women also often have elevated blood LH concentrations (see above) results in the excessive production of androgen hormones, which is so characteristic in PCOS. While excessive exposure of developing eggs to ovarian androgens compromises follicle and egg growth it also impairs endometrial response to estrogen, which could explain the common finding of poor endometrial thickening in many PCOS women undergoing IVF.

The obvious remedy for these adverse effects on egg and endometrial development is to employ stimulation protocols that limit ovarian over-exposure to LH and allowing the time necessary for the follicles/eggs to develop optimally, prior to administering hCG through the judicious implementation of   “Prolonged coasting” (PC).

 

“PROLONGED COASTING”:

In the early 90’s we were the first to report on “prolonged coasting” (PC), a novel approach that protects egg quality while preventing the development of OHSS. PC has since, gained widespread acceptance as a method of choice for preventing OHSS and has established itself as the “standard of care”. It involves withholding gonadotropin therapy while continuing the administration of the GnRHa and waiting until the plasma estradiol concentration drops below 2,500 pg/ml. Thereupon hCG is administered. In such cases, regardless of the number of developed follicles or the number of eggs retrieved, these women rarely, if ever develop OHSS. It has been reported that while PC virtually eliminates the risk of life-endangering complications associated with OHSS, there are reports in the literature that “the price to pay with PC” is often a poorer fertilization rate and   reduced embryo implantation potential, compromising the pregnancy”. It is the author’s opinion an experience in the development of PC that egg/embryo quality deficit likely has  little to do with the process of PC, itself and can be  explained as follows:  When  PC is initiated too early, follicle growth and development may cease (as evidenced by the estradiol level plateauing or falling immediately, rather than showing an initial continued increase), and when  PC is started  too late, the follicles will often become cystic, measuring >21mm by the time the estradiol level falls below the safe threshold of 2500pg/ml, and so harbor dysmorphic  eggs. Thus precise timing of the initiation of PC is critical. It should in pact be initiated preemptively in all cases when there are more than 25 follicles and the plasma estradiol reaches or exceeds 2,500pg/ml in association, provided that at least 50% of the follicles measuring 14-16mm in mean diameter. Not a day sooner or a day later. If PC is initiated with precise timing, it will usually be followed by a further progressive rise in the estradiol concentration. After a few days, the estradiol level will plateau and then it will start to fall (often rapidly). The temptation to trigger with hCG before the estradiol level falls below 3000picogtrams per milliliter must be resisted …even if the level falls below 1,000pg/ml by the time hCG is given.

Since when using agonist ( Cetrotide/Ganirelix/Orgalutron) pituitary suppression throughout the stimulation phase with gonadotropins, the plasma estradiol level often under expressed follicle growth, this method of pituitary blockade should not be used in cases ( such as with PCOS) where PC might be required.

 

Please go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select.  Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

  • A Fresh Look at the Indications for IVF
  • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
  • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
  • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
  • The Fundamental Requirements For Achieving Optimal IVF Success
  • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
  • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
  • IVF and the use of Supplementary Human Growth Hormone (HGH) : Is it Worth Trying and who needs it?
  • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
  • Blastocyst Embryo Transfers Should be the Standard of Care in IVF
  • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
  • Embryo Transfer: The “Holy Grail in IVF.
  • IVF: Approach to Selecting the Best Embryos for Transfer to the Uterus.
  • Fresh versus Frozen Embryo Transfers (FET) Enhance IVF Outcome
  • Frozen Embryo Transfer (FET): A Rational Approach to Hormonal Preparation and How new Methodology is Impacting IVF.
  • Genetically Testing Embryos for IVF
  • Staggered IVF
  • Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
  • IVF: Selecting the Best Quality Embryos to Transfer
  • Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
  • PGS in IVF: Are Some Chromosomally abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
  • Sher Fertility Solutions (SFS): An Exciting New Chapter….
  • Should IVF Treatment Cycles be provided uninterrupted or be Conducted in 7-12 Pre-scheduled “Batches” per Year
  • A personalized, stepwise approach to IVF
  • How Many Embryos should be transferred: A Critical Decision in IVF.
  • Avoiding High Order Multiple Pregnancies (Triplets or Greater) with IVF
  • The Role of Nutritional Supplements in Preparing for IVF
  • Ovarian Hyperstimulation Syndrome (OHS): Its Evolution & Reducing itsIncumbent Risks
  • Taking A Fresh Look at Ovarian Hyperstimulation Syndrome (OHSS), its Presentation, Prevention and Management
  • Preventing Severe Ovarian Hyperstimulation Syndrome (OHSS) with “Prolonged Coasting”
  • IVF Outcome in Patients with Polycystic Ovarian Syndrome (PCOS): Minimizing the Risk of Severe Ovarian Hyperstimulation Syndrome (OHSS) and optimizing Egg/Embryo Quality.
  • Understanding Polycystic Ovarian Syndrome (PCOS) and the Need to Customize Ovarian Stimulation Protocols.
  • IVF & Polycystic Ovarian Syndrome (PCOS): Reducing the Risk of Severe Ovarian Hyperstimulation Syndrome (OHSS), Improving Egg Quality and Optimizing Outcome.

 

 

______________________________________________________

ADDENDUM: PLEASE READ!!

INTRODUCING SHER FERTILITY SOLUTIONS (SFS)

Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

 

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or,  enroll online on then home-page of my website (www.SherIVF.com). 

________________________________________________________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

………………………………………………………………..

 

 

 

 

 

 

Name: Tamamiea J

I just began estrogen priming I took my estrogen patch I mistakenly took the leuproliide instead of the fyramodel when I realized it was the wrong injection I took the fyramadel will this effect the process

Answer:

I do not believe that one transgression will impact your cycle.

Good Luck!

Geoff Sher

__________________________________________________________________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

………………………………………………………………..

 

Ivf

Name: Amna S

PGS tested Ivf failed

Answer:

Embryo karyotype (as assessed by PGS/PGT) is a very important determinant of “competency” (the ability to propagate a viable pregnancy) but it is by no means the only factor!

Whenever a patient fails to achieve a viable pregnancy following embryo transfer (ET), the first question asked is why! Was it simply due to, bad luck?, How likely is the failure to recur in future attempts and what can be done differently, to avoid it happening next time?.

It is an indisputable fact that any IVF procedure is at least as likely to fail as it is to succeed. Thus when it comes to outcome, luck is an undeniable factor. Notwithstanding, it is incumbent upon the treating physician to carefully consider and address the causes of IVF failure before proceeding to another attempt:

  1. Age: The chance of a woman under 35Y of age having a baby per embryo transfer is about 35-40%. From there it declines progressively to under 5% by the time she reaches her mid-forties. This is largely due to declining chromosomal integrity of the eggs with advancing age…”a wear and tear effect” on eggs that are in the ovaries from birth.
  2. Embryo Quality/”competency (capable of propagating a viable pregnancy)”. As stated, the woman’s age plays a big role in determining egg/embryo quality/”competency”. This having been said, aside from age the protocol used for controlled ovarian stimulation (COS) is the next most important factor. It is especially important when it comes to older women, and women with diminished ovarian reserve (DOR) where it becomes essential to be aggressive, and to customize and individualize the ovarian stimulation protocol.

 We used to believe that the uterine environment is more beneficial to embryo development than is the incubator/petri dish and that accordingly, the earlier on in development that embryos are transferred to the uterus, the better. To achieve this goal, we used to select embryos for transfer based upon their day two or microscopic appearance (“grade”).  But we have since learned that the further an embryo has advanced in its development, the more likely it is to be “competent” and that embryos failing to reach the expanded blastocyst stage within 5-6 days of being fertilized are almost invariably “incompetent” and are unworthy of being transferred. Moreover, the introduction into clinical practice about 15y ago, (by Levent Keskintepe PhD and myself) of Preimplantation Genetic Sampling (PGS), which assesses for the presence of all the embryos chromosomes (complete chromosomal karyotyping), provides another tool by which to select the most “competent” embryos for transfer. This methodology has selective benefit when it comes to older women, women with DOR, cases of unexplained repeated IVF failure and women who experience recurrent pregnancy loss (RPL).

  1. The number of the embryos transferred: Most patients believe that the more embryos transferred the greater the chance of success. To some extent this might be true, but if the problem lies with the use of a suboptimal COS protocol, transferring more embryos at a time won’t improve the chance of success. Nor will the transfer of a greater number of embryos solve an underlying embryo implantation dysfunction (anatomical molecular or immunologic).Moreover, the transfer of multiple embryos, should they implant, can and all too often does result in triplets or greater (high order multiples) which increases the incidence of maternal pregnancy-induced complications and of premature delivery with its serious risks to the newborn. It is for this reason that I rarely recommend the transfer of more than 2 embryos at a time and am moving in the direction of advising single embryo transfers …especially when it comes to transferring embryos derived through the fertilization of eggs from young women.

 

  1. Implantation Dysfunction (ID): Implantation dysfunction is a very common (often overlooked) cause of “unexplained” IVF failure. This is especially the case in young ovulating women who have normal ovarian reserve and have fertile partners. Failure to identify, typify, and address such issues is, in my opinion, an unfortunate and relatively common cause of repeated IVF failure in such women. Common sense dictates that if ultrasound guided embryo transfer is performed competently and yet repeated IVF attempts fail to propagate a viable pregnancy, implantation dysfunction must be seriously considered. Yet ID is probably the most overlooked factor. The most common causes of implantation dysfunction are:

 

  1. A“ thin uterine lining”
  2. A uterus with surface lesions in the cavity (polyps, fibroids, scar tissue)
  3. Immunologic implantation dysfunction (IID)
  4. Endocrine/molecular endometrial receptivity issues
  5. Ureaplasma Urealyticum (UU) Infection of cervical mucous and the endometrial lining of the uterus, can sometimes present as unexplained early pregnancy loss or unexplained failure following intrauterine insemination or IVF. The infection can also occur in the man, (prostatitis) and thus can go back and forth between partners, with sexual intercourse. This is the reason why both partners must be tested and if positive, should be treated contemporaneously.

Certain causes of infertility are repetitive and thus cannot readily be reversed. Examples include advanced age of the woman; severe male infertility; immunologic infertility associated with alloimmune implantation dysfunction (especially if it is a “complete DQ alpha genetic match between partners plus uterine natural killer cell activation (NKa).

I strongly recommend that you visit www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select.  Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

 

  • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
  • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
  • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
  • The Fundamental Requirements for Achieving Optimal IVF Success
  • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
  • Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
  • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
  • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
  • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
  • Blastocyst Embryo Transfers should be the Standard of Care in IVF
  • IVF: How Many Attempts should be considered before Stopping?
  • “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
  • IVF Failure and Implantation Dysfunction:
  • The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
  • Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
  • Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
  • Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
  • Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management 🙁 Case Report)
  • Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
  • Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
  • Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
  • Endometrial Thickness, Uterine Pathology and Immunologic Factors
  • Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
  • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
  • A personalized, stepwise approach to IVF
  • How Many Embryos should be transferred: A Critical Decision in IVF?

______________________________________________________

ADDENDUM: PLEASE READ!!

INTRODUCING SHER FERTILITY SOLUTIONS (SFS)

Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

 

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or,  enroll online on then home-page of my website (www.SherIVF.com). 

________________________________________________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

………………………………………………………………..

 

 

 

 

Name: Ashley H

Good Morning. I am 31 and have a hormonal IUD. I had fertility testing done and my AMH came back as 0.18 however my AFC was 16. Estrogen 88 and FSH 2.35. I don’t know where I was in my cycle when I gov the testing done since the IUD stopped my periods. Prior to insertion, my periods would come every 19-21 days. Which is more indicative of fertility, my AMH or AFC? I don’t plan of having a baby for another 1-2 years. Thank you.

Answer:

Your AFC, your age and your basal FSH all suggest to me that the AMH value might  not br accurate. I would definitely repeat it!~

Good luck!

Geoff Sher

______________________________________________________________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

………………………………………………………………..

Name: Salma O

I made a hcg test 5 days before my period and it was positive ( my last period was 1 of march and it is irregular but my last periods last in average 31 days and ovulation is happened at day 18 or 19)
I made 2 blood tests one 4 days before expected period and the day after they were 23.8 and 36. There is no bleeding or bad cramps
Is that normal and indicates healthy pregnancy or the numbers are low?

Answer:

Regrettably! , this does not sound like a viable pregnancy! I hope I am wrong!

Geoff Sher

_____________________________________________________________

Measuring and interpreting Blood hCG to Assess Pregnancy Viability Following ART Treatments.

Geoffrey Sher MD

 

I know of no medical announcement associated with the degree of emotional anticipation and anguish as that associated with a pending diagnosis/confirmation of pregnancy following infertility treatment. In fact, hardly a day goes by where I am not confronted by a patient anxiously seeking interpretation of a pregnancy test result.

Testing urine or blood for the presence of human chorionic gonadotropin (hCG) is the most effective and reliable way to confirm conception. The former, is far less expensive than the latter and is the most common method used. It is also more convenient because it can be performed in the convenience of the home setting. However, urine hCG testing for pregnancy is not nearly as reliable or as sensitive e as is blood hCG testing. Blood testing can detect implantation several days earlier than can a urine test. Modern pregnancy urine test kits can detect hCG about 16-18 days following ovulation (or 2-3 days after having missed a menstrual period), while blood tests can detect hCG, 12-13 days post-ovulation (i.e. even prior to menstruation).

The ability to detect hCG in the blood as early as possible and thereupon to track its increase, is particularly valuable in women undergoing controlled ovarian stimulation (COS) with or without intrauterine insemination (IUI) or after IVF. The earlier hCG can be detected in the blood and its concentration measured, the sooner levels can be tracked serially over time and so provide valuable information about the effectiveness of implantation, and the potential viability of the developing conceptus.

There are a few important points that should be considered when it comes to measuring interpreting blood hCG levels. These include the following:

  • All modern day blood (and urine) hCG tests are highly specific in that they measure exclusively for hCG. There is in fact no cross-reactivity with other hormones such as estrogen, progesterone or LH.
  • Post conception hCG levels, measured 10 days post ovulation or egg retrieval can vary widely (ranging from 5mIU/ml to above 400mIU/ml. The level will double every 48–72 hours up to the 6th week of gestation whereupon the doubling rate starts to slow down to about 96 hours. An hCG level of 13,000-290, 0000 mIU/ml is reached by the end of the 1st trimester (12 weeks) whereupon it slowly declines to approximately 26,000– 300,000 mIU/ml by full term. Below are the average hCG levels during the first trimester:
    • 3 weeks LMP: 5 – 50 mIU/ml
    • 4 weeks LMP: 5 – 426 mIU/ml
    • 5 weeks LMP: 18 – 7,340 mIU/ml
    • 6 weeks LMP: 1,080 – 56,500 mIU/ml
    • 7 – 8 weeks LMP: 7, 650 – 229,000 mIU/ml
    • 9 – 12 weeks LMP: 25,700 – 288,000 mIU/ml
  • A single hCG blood level is not sufficient to assess the viability of an implanting embryo. Caution should be used in making too much of an initial hCG level. This is because a normal pregnancy can start with relatively low hCG blood levels. It is the rate of the rise of the blood hCG level that is relevant.
  • In some cases the initially hCG level is within the normal range, but then fails to double in the ensuing 48-72hours. In some cases it might even plateau or decline, only to start doubling appropriately thereafter. When this happens, it could be due to:
    • A recovering implantation, destined to develop into a clinical gestation
    • A failing implantation (a chemical pregnancy)
    • A multiple pregnancy which is spontaneously reducing (i.e., one or more of the concepti is being lost) or,
    • An ectopic pregnancy which will either absorb spontaneously (a chemical-tubal gestation), or evolve into a full blown tubal pregnancy continue and declare itself through characteristic symptoms and signs of an intraperitoneal bleed.
  • The blood hCG test needs to be repeated at least once after 48h and in some cases it will need to be repeated one or more times (at 48h intervals) thereafter, to confirm that implantation is progressing normally.
  • Ultimately the diagnosis of a viable pregnancy requires confirmation of the presence of an intrauterine gestational sac by ultrasound examination. The earliest that this can be achieved is when the beta hCG level exceeds 1,000mIU/ml (i.e., around 5-6 weeks).
  • Most physicians prefer to defer the performance of a routine US diagnosis of pregnancy until closer to the 7th week. This is because by that time, cardiac activity should be clearly detectable, allowing for more reliable assessment of pregnancy viability.
  • There are cases where the blood beta hCG level is extraordinarily high or the rate of rise is well above the normal doubling rate. The commonest explanation is that more than one pregnancy has implanted. However in some cases it can point to a molar pregnancy
  • Finally, there on rare occasions, conditions unrelated to pregnancy can result in detectable hCG levels in blood and urine. They include ovarian tumors that produce hCG, such as certain types of cystic teratomas (dermoid cysts) and some ovarian cancers such as dysgerminomas.

________________________________________________________________________________________________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

………………………………………………………………..

 

 

 

I

Name: Katrina R

If my HCG levels are 67777mlu/58mL how many weeks would I be?

Answer:

Measuring and interpreting Blood hCG to Assess Pregnancy Viability Following ART Treatments.

Geoffrey Sher MD

 

I know of no medical announcement associated with the degree of emotional anticipation and anguish as that associated with a pending diagnosis/confirmation of pregnancy following infertility treatment. In fact, hardly a day goes by where I am not confronted by a patient anxiously seeking interpretation of a pregnancy test result.

Testing urine or blood for the presence of human chorionic gonadotropin (hCG) is the most effective and reliable way to confirm conception. The former, is far less expensive than the latter and is the most common method used. It is also more convenient because it can be performed in the convenience of the home setting. However, urine hCG testing for pregnancy is not nearly as reliable or as sensitive e as is blood hCG testing. Blood testing can detect implantation several days earlier than can a urine test. Modern pregnancy urine test kits can detect hCG about 16-18 days following ovulation (or 2-3 days after having missed a menstrual period), while blood tests can detect hCG, 12-13 days post-ovulation (i.e. even prior to menstruation).

The ability to detect hCG in the blood as early as possible and thereupon to track its increase, is particularly valuable in women undergoing controlled ovarian stimulation (COS) with or without intrauterine insemination (IUI) or after IVF. The earlier hCG can be detected in the blood and its concentration measured, the sooner levels can be tracked serially over time and so provide valuable information about the effectiveness of implantation, and the potential viability of the developing conceptus.

There are a few important points that should be considered when it comes to measuring interpreting blood hCG levels. These include the following:

  • All modern day blood (and urine) hCG tests are highly specific in that they measure exclusively for hCG. There is in fact no cross-reactivity with other hormones such as estrogen, progesterone or LH.
  • Post conception hCG levels, measured 10 days post ovulation or egg retrieval can vary widely (ranging from 5mIU/ml to above 400mIU/ml. The level will double every 48–72 hours up to the 6th week of gestation whereupon the doubling rate starts to slow down to about 96 hours. An hCG level of 13,000-290, 0000 mIU/ml is reached by the end of the 1st trimester (12 weeks) whereupon it slowly declines to approximately 26,000– 300,000 mIU/ml by full term. Below are the average hCG levels during the first trimester:
    • 3 weeks LMP: 5 – 50 mIU/ml
    • 4 weeks LMP: 5 – 426 mIU/ml
    • 5 weeks LMP: 18 – 7,340 mIU/ml
    • 6 weeks LMP: 1,080 – 56,500 mIU/ml
    • 7 – 8 weeks LMP: 7, 650 – 229,000 mIU/ml
    • 9 – 12 weeks LMP: 25,700 – 288,000 mIU/ml
  • A single hCG blood level is not sufficient to assess the viability of an implanting embryo. Caution should be used in making too much of an initial hCG level. This is because a normal pregnancy can start with relatively low hCG blood levels. It is the rate of the rise of the blood hCG level that is relevant.
  • In some cases the initially hCG level is within the normal range, but then fails to double in the ensuing 48-72hours. In some cases it might even plateau or decline, only to start doubling appropriately thereafter. When this happens, it could be due to:
    • A recovering implantation, destined to develop into a clinical gestation
    • A failing implantation (a chemical pregnancy)
    • A multiple pregnancy which is spontaneously reducing (i.e., one or more of the concepti is being lost) or,
    • An ectopic pregnancy which will either absorb spontaneously (a chemical-tubal gestation), or evolve into a full blown tubal pregnancy continue and declare itself through characteristic symptoms and signs of an intraperitoneal bleed.
  • The blood hCG test needs to be repeated at least once after 48h and in some cases it will need to be repeated one or more times (at 48h intervals) thereafter, to confirm that implantation is progressing normally.
  • Ultimately the diagnosis of a viable pregnancy requires confirmation of the presence of an intrauterine gestational sac by ultrasound examination. The earliest that this can be achieved is when the beta hCG level exceeds 1,000mIU/ml (i.e., around 5-6 weeks).
  • Most physicians prefer to defer the performance of a routine US diagnosis of pregnancy until closer to the 7th week. This is because by that time, cardiac activity should be clearly detectable, allowing for more reliable assessment of pregnancy viability.
  • There are cases where the blood beta hCG level is extraordinarily high or the rate of rise is well above the normal doubling rate. The commonest explanation is that more than one pregnancy has implanted. However in some cases it can point to a molar pregnancy
  • Finally, there on rare occasions, conditions unrelated to pregnancy can result in detectable hCG levels in blood and urine. They include ovarian tumors that produce hCG, such as certain types of cystic teratomas (dermoid cysts) and some ovarian cancers such as dysgerminomas.

 

______________________________________________________________________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

………………………………………………………………..

 

Name: Kristy D

Hello!
I have recently turned 43 and wondering whether to keep trying IVF. Have done 5 cycles in the past 12 months. AMH is 30 and AFC ~35. But, only get around 7-12 eggs at a time and poor fertilisation (<50%). Have not made any blasts last two rounds. All protocols have been FSH (Puregon, Bemfola, Menopur all tried individually) 225-450 dose + orgalutran + single trigger.
Thanks so much for your time!.

Answer:

It is primarily the egg (rather than the sperm) that determines the chromosomal integrity (karyotype) of the embryo, the most important determinant of egg/embryo competency”. A “competent” egg is therefore one that has a normal karyotype and has the best potential to propagate a “competent” embryo. In turn, a “competent embryo is one that possesses the highest potential to implant and develop into a normal, healthy, baby.

When it comes to reproductive performance, humans are the least efficient of all mammals. Even in young women under 35y, at best only 2 out of 3 eggs are chromosomally numerically normal (euploid). The remainder will have an irregular number of chromosomes (aneuploid) and are thus “incompetent”. The incidence of egg aneuploidy increases with age such by age 39 years, 3 in 4 are “competent”, and by the mid-forties, at best one in 10 are likely to be aneuploid. The fertilization of an aneuploid egg will inevitably lead to embryo aneuploidy (“incompetence”). As previously stated,   an aneuploid embryo cannot propagate a normal pregnancy

Within 38-42 hours of the initiation of the spontaneous pre-ovulatory luteinizing hormone (LH) surge (and also following administration of the human chorionic gonadotropin (hCG) “trigger” shot, given to induce egg maturation after ovarian stimulation with fertility drugs), the egg embarks on a rapid maturational process that involves halving of its 46 chromosomes to 23. During this process, (known as meiosis) 23 chromosomes are retained within the nucleus of the egg while the remaining 23 chromosomes are expelled in a membrane envelopment, from the egg nucleus. This small structure known as the polar body, comes to lie immediately below the “shell” of the egg (the zona pellucida) and is known as the 1st polar body or PB-1. The sperm, in the process of its maturation also undergoes meiosis divides into two separate functional gametes, each containing 23 chromosomes (half its original number of 46 chromosomes).  With subsequent fertilization, the 23 chromosomes of the egg now fuse with the 23 chromosomes of the mature sperm resulting in the development of an embryo with  46 chromosomes (the normal human genome) comprising a combination of the genetic material from both partners. For the embryo to have exactly 46 chromosomes (the euploid number), both the mature egg and mature spermatozoon must contain exactly 23 chromosomes. Only such euploid embryos are “competent” (capable of developing into healthy babies). Those with an irregular number of chromosomes (aneuploid embryos) are “incompetent” and are incapable of propagating healthy babies. While embryo “incompetence” can result from either egg or sperm aneuploidy, it usually stems from egg aneuploidy. However, in cases of moderate or severe male factor infertility, the sperm’s contribution to aneuploidy of the embryo can be significantly greater.

While embryo ploidy (numerical chromosomal integrity) is not the only determinant of its “competency, it is by far the most important and in fact is a rate-limiting factor in human reproduction. It is causal in the vast majority of cases of “failed nidation which in turn is responsible for most cases of a failed pregnancy (natural or assisted) and causes most sporadic early pregnancy losses (both chemical gestations and miscarriages) as well as  many chromosomal birth defects such as Turner syndrome (X-monosomy ) Down syndrome (trisomy 21) and Edward syndrome (trisomy 18) .

In most cases, embryos that develop too slowly as well as those that grow too fast (i.e. ones that by day 3 post-fertilization comprise fewer than 6 cells or more than 9 cells) and/or embryos that contain cell debris or “fragments” are usually aneuploid and are thus unable to propagate a healthy pregnancy (“incompetent”). Additionally, embryos that fail to survive in culture to the blastocyst stage are also almost always aneuploid/”incompetent”.

At a certain point in the later stage of a woman’s reproductive career, the number of remaining eggs in her ovaries falls below a certain threshold, upon which she is unable to respond optimally to fertility drugs. Often times this is signaled by a rising day 3 basal blood follicle stimulating hormone (FSH) level (>9.0MIU/ml) and a falling blood anti-Mullerian hormone (AMH) level (<2.0ng/ml or <15nmol/L). Such women who have  diminished ovarian reserve (DOR) produce fewer eggs in response to ovarian stimulation. While DOR is most commonly encountered in women over 40 years of age it can and indeed also can occur in much younger women.

A few important (but often overlooked concepts should be considered in this regard:

  • Age: It is advancing chronologic age and NOT declining ovarian reserve (as evidenced by abnormal blood AMH or FSH that results in an increased incidence of egg/embryo “incompetence” due to aneuploidy
  • The ovaries and developing eggs of women with DOR (regardless of age) are highly susceptible to the adverse effect of excessive Luteinizing Hormone (LH)-induced, ovarian overproduction of male hormones (e,g. testosterone and androstenedione). While a little testosterone produced by the ovary promotes normal follicle growth and orderly egg development excessive testosterone has a converse effect. That is why in older women and those who regardless of their age have DOR (and thus excessive LH bioavailability and increased ovarian testosterone production), the use of ovarian stimulation protocols that fail to down-regulate LH activity prior to initiating ovarian stimulation with gonadotropins, often prejudices egg/embryo quality and IVF outcome.
  • Simply stated, while age is certainly the most important factor in determining the incidence of egg/embryo aneuploidy, women with DOR (regardless of their age), are less likely to propagate euploid (competent) eggs/embryos. While virtually nothing can be done to lower the incidence of age related aneuploidy, it is indeed possible to avoid a further decrease in egg/embryo “competency”  by individualizing the protocols of ovarian stimulation used.
  • My preferred protocols for women who have relatively normal ovarian reserve:
  • The conventional long pituitary down regulation protocol: BCP are commenced early in the cycle and continued for at least 10 days. Starting 3 days before the BCP is to be discontinued, it is overlapped with an agonist such as Lupron 10U daily for three (3) days and continued until menstruation begins (which should ensue within 5-7 days of stopping the BCP). At that point an US examination is done along with a baseline measurement of blood estradiol to exclude a functional ovarian cyst. Daily Lupron (10U) is continued and an FSH-dominant gonadotropin such as Follistim, Puregon or Gonal-f daily is administered daily falong with 37.5U of Menopur (an FSH/LH combination) for 2 days. On the 3rd day the gonadotropin dosage is reduced by about one half and the dosage of Menopur is increased to 75U daily. Daily ultrasound and blood estradiol measurements are conducted starting on the 7th or 8th day of gonadotropin administration and continued until daily ultrasound follicle assessments indicate that most follicles have fully developed. At this point egg maturation is “triggered” using an intramuscular injection of a recombinant hCGr (Ovidrel) 500mcg or urinary derived hCGu (Pregnyl/Profasi/Novarel) 10,000U. And an egg retrieval is scheduled for 36h later.
  • The agonist/antagonist conversion protocol (A/ACP): This is essentially the same as the conventional long down regulation protocol (see “a”-as above), except that with the onset of post-BCP menstruation, the agonist is supplanted by daily administration of a GnRH antagonist (e.g. Ganirelix, Cetrotide or Orgalutron) at a dosage of 125-250mcg daily until the day of the “trigger”. When it comes to women who have DOR I favor the use of the A/ACP, adding supplementary human growth hormone (HGH). In cases where the DOR is regarded as severe (AMH=<0.2), I often augment  the AACP protocol by using estrogen priming for 7-9 days prior to or with the commencement of gonadotropin therapy; For this I prescribe E2 skin patches  or intramuscular  estradiol valerate (Delestrogen), prior to or sometimes concurrent with, the  commencement of the GnRH antagonist administration.
  • The following Ovarian stimulation protocols are in my opinion best avoided in stimulating olderf women and /or thosed who regardless of age , have  DOR :
  1. Microdose agonist (e.g. Lupron) “flare” protocols which result in an out-pouring of pituitary-LH at the critical time that ovarian follicles and eggs start developing/growing.
  2. High dosages of LH -containing fertility drugs (e.g. Menopur).
  3. Supplementation with preparations that are testosterone-based
  4. Supplementation with DHEA (which is converted to testosterone in the ovaries.
  5. Clomiphene citrate or Letrozole which cause increased release of LH and thus increase ovarian male hormone (testosterone and androstenedione output.
  6. “Triggering” egg maturation using too low a dosage of hCG (e.g. 5,000U rather than 10,000U) or Ovidrel (e.g. 250mcg of Ovidrel rather than 500mcg)
  7. “Triggering” women who have DOR, with an agonist (alone)such as Lupron Superfact/ Buserelin/Aminopeptidyl/Decapeptyl.
  • Preimplantation Genetic Screening (PGS):

The introduction of preimplantation genetic testing/screening (PGT/PGS) for e permits identification of all the chromosomes in the egg and embryo (full karyotyping) allowing for the  identification of the most “competent” (euploid) embryos for selective transfer to the uterus. This vastly improves the efficiency and success of the IVF process and renders us fare better equipped us to manage older women and those who regardless of their age, have DOR.

Please visit my new Blog on this very site, www. SherIVF.com, find the “search bar” and type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select.  Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly

 

  • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
  • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
  • The Fundamental Requirements For Achieving Optimal IVF Success
  • Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
  • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
  • The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
  • A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
  • Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
  • Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
  • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
  • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
  • Blastocyst Embryo Transfers Should be the Standard of Care in IVF
  • Frozen Embryo Transfer (FET) versus “Fresh” ET: How to Make the Decision
  • Frozen Embryo Transfer (FET): A Rational Approach to Hormonal Preparation and How new Methodology is Impacting IVF.
  • Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
  • Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation.
  • Preimplantation Genetic Testing (PGS) in IVF: It Should be Used Selectively and NOT be Routine.
  • Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
  • PGS in IVF: Are Some Chromosomally Abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
  • PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
  • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
  • Traveling for IVF from Out of State/Country–
  • A personalized, stepwise approach to IVF
  • How Many Embryos should be transferred: A Critical Decision in IVF.
  • The Role of Nutritional Supplements in Preparing for IVF
  • Premature Luteinization (“the premature LH surge): Why it happens and how it can be prevented.
  • IVF Egg Donation: A Comprehensive Overview

 

___________________________________________________

ADDENDUM: PLEASE READ!!

INTRODUCING SHER FERTILITY SOLUTIONS (SFS)

Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

________________________________________________________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

………………………………………………………………..

Name: Charity H

I have an embryo that has a monosomy but I would like to transfer it. I have had two clinics refuse to transfer.

Specifically I have a 45 XX (-14)
I figured it’s incompatible with life if results are accurate so should be low risk transfer. I would like to attempt to transfer this one even with the very low chance that it will take before starting a whole new cycle.

Thank you for your input!

Answer:

Human embryo development occurs through a process that encompasses reprogramming, sequential cleavage divisions and mitotic chromosome segregation and embryonic genome activation. Chromosomal abnormalities may arise during germ cell and/or preimplantation embryo development and represents a major cause of early pregnancy loss. About a decade ago, I and my associate, Levent Keskintepe PhD were the first to introduce full embryo karyotyping (identification of all 46 chromosomes) through preimplantation genetic sampling (PGS) as  a method by which to selectively transfer only euploid embryos (i.e. those that have a full component of chromosomes) to the uterus. We subsequently reported on a 2-3-fold improvement in implantation and birth rates as well as a significant reduction in early pregnancy loss, following IVF. Since then PGS has grown dramatically in popularity such that it is now widely used throughout the world.

Many IVF programs that offer PGS services, require that all participating patients consent to all their aneuploid embryos (i.e. those with an irregular quota of chromosomes) be disposed of. However,  growing evidence  suggests  that following embryo transfer, some aneuploid embryos will in the process of ongoing development,  convert to the euploid state (i.e. “autocorrect”) and then go on to develop into chromosomally normal offspring. In fact, I am personally aware of several such cases having occurred in my own practice. So clearly, summarily discarding  all aneuploid embryos as a matter of routine  we are sometimes destroying  some embryos that might otherwise have “autocorrected” and gone on to develop into  normal offspring. Thus by discarding aneuploid embryos the possibility exists that we could be denying some women the opportunity of having a baby. This creates a major ethical and moral dilemma for those of us that provide the option of PGS to our patients. On the one hand, we strive “to avoid knowingly doing harm” (the Hippocratic Oath) and as such would prefer to avoid or minimize the risk of miscarriage and/or chromosomal birth defects and on the other hand we would not wish to deny patients with aneuploid embryos, the opportunity to have a baby.

 

The basis for such embryo “autocorrection” lies in the fact that some embryos found through PGS-karyotyping to harbor one or more aneuploid cells (blastomeres) will often also harbor chromosomally normal (euploid) cells (blastomeres). The coexistence of both aneuploid and euploid cells coexisting in the same embryo is referred to as “mosaicism.”

It is against this background, that an ever-increasing number of IVF practitioners, rather than summarily discard PGS-identified aneuploid embryos are now choosing to cryobanking (freeze-store) certain of them, to leave open the possibility of ultimately transferring them to the uterus. In order to best understand the complexity of the factors involved in such decision making, it is essential to understand the causes of embryo aneuploidy of which there are two varieties:

 

  1. Meiotic aneuploidy” results from aberrations in chromosomal numerical configuration that originate in either the egg (most commonly) and/or in sperm, during preconceptual maturational division (meiosis). Since meiosis occurs in the pre-fertilized egg or in and sperm, it follows that when aneuploidy occurs due to defective meiosis, all subsequent cells in the developing embryo/blastocyst/conceptus inevitably will be aneuploid, precluding subsequent “autocorrection”. Meiotic aneuploidy will thus invariably be perpetuated in all the cells of the embryo as they replicate. It is a permanent phenomenon and is irreversible. All embryos so affected are thus fatally damaged. Most will fail to implant and those that do implant will either be lost in early pregnancy or develop into chromosomally defective offspring (e.g. Down syndrome, Edward syndrome, Turner syndrome).
  2. Mitotic aneuploidy (“Mosaicism”) occurs when following fertilization and subsequent cell replication (cleavage), some cells (blastomeres) of a meiotically normal (euploid) early embryo mutate and become aneuploid. This is referred to as “mosaicism”. Thereupon, with continued subsequent cell replication (mitosis) the chromosomal make-up (karyotype) of the embryo might either comprise of predominantly aneuploid cells or euploid cells. The subsequent viability or competency of the conceptus will thereupon depend on whether euploid or aneuploid cells predominate. If in such mosaic embryos aneuploid cells predominate, the embryo will be “incompetent”). If (as is frequently the case) euploid cells prevail, the mosaic embryo will likely be “competent” and capable of propagating a normal conceptus.

Since some mitotically aneuploid (“mosaic”) embryos can, and indeed do “autocorrect’ while meiotically aneuploid embryos cannot, it follows that an ability to reliably differentiate between these two varieties of aneuploidy would potentially be of considerable clinical value. The recent introduction of a variety of preimplantation genetic screening (PGS) known as next generation gene sequencing (NGS) has vastly improved the ability to reliably and accurately karyotype embryos and thus to diagnose embryo “mosaicism”.

Most complex aneuploidies are meiotic in origin and will thus almost invariably fail to propagate viable pregnancies. The ability of mosaic embryos to autocorrect is influenced by stage of embryo development in which the diagnosis is made, which chromosomes are affected, whether the aneuploidy involves a single chromosome (simple) or involves 3 or more chromosomes (complex), and the percentage of cells that are aneuploid. Many embryos diagnosed as being mosaic prior to their development into blastocysts (in the cleaved state), subsequently undergo autocorrection to the euploid state (normal numerical chromosomal configuration) as they develop to blastocysts in the Petri dish. This is one reason why “mosaicism” is more commonly detected in early embryos than in blastocysts. Embryos with segmental mosaic aneuploidies, i.e. the addition (duplication) or subtraction (deletion), are also more likely to autocorrect.  Finally, the lower the percentage of mitotically aneuploid (mosaic) cells in the blastocyst the greater the propensity for autocorrection and propagation of chromosomally normal (euploid) offspring. A blastocyst with <30% mosaicism could yield a 30% likelihood of a healthy baby rate with 10-15% miscarriage rate, while with >50% mosaicism the baby rate is roughly halved and the miscarriage rate double.

 

 

As stated, the transfer of embryos with autosomal meiotic trisomy, will invariably result in failed implantation, early miscarriage or the birth of a defective child. Those with autosomal mitotic (“mosaic”) trisomies, while having the ability to autocorrect in-utero and result in the birth of a healthy baby can, depending on the percentage of mosaic (mitotically aneuploid) cells present, the number of aneuploid chromosomes and the type of mosaicism (single or segmental) either autocorrect and propagate a normal baby, result in failed implantation, miscarry or cause a birth defect (especially with trisomies 13, 18 or 21). This is why when it comes to giving consideration to transferring trisomic embryos, suspected of being “mosaic”, I advise patients to undergo prenatal genetic testing once pregnant and to be willing to undergo termination of pregnancy in the event of the baby being affected. Conversely, when it comes to meiotic autosomal monosomy, there is almost no chance of a viable pregnancy. in most cases implantation will fail to occur and if it does, the pregnancy will with rare exceptions, miscarry. “Mosaic” (mitotically aneuploid) autosomally monosomic embryos where a chromosome is missing), can and often will “autocorrect” in-utero and propagate a viable pregnancy. It is for this reason that I readily recommend the transfer of such embryos, while still (for safety sake) advising prenatal genetic testing in the event that a pregnancy results.

Given our ability to recognize “mosaicism” through karyotyping of embryos, the question arrases as to which “mosaic” embryos are capable of auto-correcting in-utero and propagating viable pregnancies. Research suggests that that virtually no autosomal monosomy embryos will propagate viable pregnancies. Thus, the transfer of such mosaic embryos is virtually risk free.  Needless to say however, in any such cases, it is essential to make full disclosure to the patient (s), and to insure the completion of a detailed informed consent agreement which would include a commitment by the patient (s) to undergo prenatal genetic testing (amniocentesis/CVS) aimed at excluding a chromosomal defect in the developing baby and/or a willingness to terminate the pregnancy should a serious birth defect be diagnosed.

 

I strongly recommend that you visit www.SherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select.  Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

  • A Fresh Look at the Indications for IVF
  • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
  • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
  • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
  • The Fundamental Requirements For Achieving Optimal IVF Success
  • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
  • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
  • Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
  • Optimizing Response to Ovarian Stimulation in Women with Compromised Ovarian Response to Ovarian Stimulation: A Personal Approach.
  • Hereditary Clotting Defects (Thrombophilia)
  • Blastocyst Embryo Transfers done 5-6 Days Following Fertilization are Fast Replacing Earlier day 2-3 Transfers of Cleaved Embryos.
  • Embryo Transfer Procedure: The “Holy Grail in IVF.
  • Timing of ET: Transferring Blastocysts on Day 5-6 Post-Fertilization, Rather Than on Day 2-3 as Cleaved Embryos.
  • IVF: Approach to Selecting the Best Embryos for Transfer to the Uterus.
  • Fresh versus Frozen Embryo Transfers (FET) Enhance IVF Outcome
  • Frozen Embryo Transfer (FET): A Rational Approach to Hormonal Preparation and How new Methodology is Impacting IVF.
  • Staggered IVF
  • Staggered IVF with PGS- Selection of “Competent” Embryos Greatly Enhances the Utility & Efficiency of IVF.
  • Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
  • Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation
  • Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
  • IVF: Selecting the Best Quality Embryos to Transfer
  • Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
  • PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
  • IVF outcome: How Does Advancing Age and Diminished Ovarian Reserve (DOR) Affect Egg/Embryo “Competency” and How Should the Problem be addressed.

 

 

___________________________________________________

ADDENDUM: PLEASE READ!!

INTRODUCING SHER FERTILITY SOLUTIONS (SFS)

Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

 

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or,  enroll online on then home-page of my website (www.SherIVF.com). 

 

_____________________________________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

………………………………………………………………..

 

 

__________________________________________

Name: Laura K

Hello Dr Sher, thank you for your very thorough
response. I forgot to mention with my AMH being 15 which is satisfactory for my age do you think I will ever be able to have a child naturally ?

Thank you,

Laura

Answer:

Possibly…but I would need much more information to provide an authoritative opinion.

 

Geoff Sher

Name: Laura K

Hello Dr Sher, thank you for your very thorough
response. I forgot to mention with my AMH being 15 which is satisfactory for my age do you think I will ever be able to have a child naturally ?

Thank you,

Laura

Answer:

Possibly…but I would need much more information to provide an authoritative opinion.

 

Geoff Sher

Name: Laura K

Hello Dr Sher I have just completed my 2nd ivf which failed due to my 13 follicles in egg collection being empty. The consultant diagnosed me with genuine empty follicle syndrome.

I am 36 years old with a AMH of 15. I had a short protocol this time with ovaleap and fyremadel firstly. All my follicles were roughly between 19-22 mm before egg collection. They triggered me this time with 250 ovitrelle and 1ml of buserelin. I had a reaction to the buserelin as it brought my stomach instantly into a lump. I found it strange how my last scan I literally felt like I was going to pop , however the following morning after I double triggered the night before I woke up to no more pain or uncomfortable bloating. I contacted my nurse and she said it could be due to the follicles being told to stop growing so to speak. But I felt odd how the pain had gone completely.

My previous 1st cycle if ivf was a long protocol. Again they used Ovitrelle 250 and again could only get 1 egg out,the rest where again empty. This one egg resulted in my 21 month old daughter.

They took a blood test after the 1st egg collection and found the trigger shot had absorbed. But not at the normal rate.

This cycle they didn’t take a blood test after and the consultant said that re-triggering after 36 hours would not work. In hindsight I wish I pushed this but due to the shock and groggyness of the drugs. I didn’t push it. Do you think this may have worked?

Do you think I should change the trigger shot or dosage? I don’t have pcos, endo or heavy periods. I have a regular 26-28 cycle. But I only have a 2-3 day cycle now. My husband is 38 and his results have always come back fine.

Any advice would be much appreciated, thank you,

Laura

Answer:

_

Frequently, when following vigorous and often repeated flushing of follicles at egg retrieval they fail to yield eggs, it is ascribed to “Empty Follicle Syndrome.” This is a gross misnomer, because all follicles contain eggs. So why were no eggs retrieved from the follicles? Most likely it was because they would/could not yield the eggs they harbored.

This situation is most commonly seen in older women, women who have severely diminished ovarian reserve, and in women with polycystic ovarian syndrome (PCOS). In my opinion it is often preventable when an optimal, individualized and strategic protocol for controlled ovarian stimulation (COS) is employed and the correct timing and dosage is applied to the “hCG trigger shot.

Normally, following optimal ovarian stimulation, the hCG “trigger shot” is given for the purpose of it triggering meiosis (reproductive division) that is intended to halve the number of chromosomes from 46 to 23 within 32-36 hours. The hCG trigger also enables the egg to signal the “cumulus cells” that bind it firmly to the inner wall of the follicle (through enzymatic activity), to loosen or disperse, so that the egg can detach and readily be captured at egg retrieval (ER).

Ordinarily, normal eggs (and even those with only one or two chromosomal irregularities) will readily detach and be captured with the very first attempt to empty a follicle. Eggs that have several chromosomal numerical abnormalities (i.e., are “complex aneuploid”) are often unable to facilitate this process. This explains why when the egg is complex aneuploid, its follicle will not yield an egg…and why, when it requires repeated flushing of a follicle to harvest an egg, it is highly suggestive of it being aneuploid and thus “incompetent” (i.e., incapable of subsequently propagating a normal embryo).

Older women, women with diminished ovarian reserve, and those with polycystic ovarian syndrome, tend to have more biologically active LH in circulation. LH causes production of male hormone (androgens, predominantly testosterone), by ovarian connective tissue (stroma/theca). A little testosterone is needed for optimal follicle development and for FSH-induced ovogenesis (egg development). Too much LH activity compromises the latter, and eggs so affected are far more likely to be aneuploid following meiosis.

Women with the above conditions have increased LH activity and are thus more likely to produce excessive ovarian testosterone. It follows that sustained, premature elevations in LH or premature luteinization (often referred to as a “premature LH surge”) will prejudice egg development. Such compromised eggs are much more likely to end up being complex aneuploid following the administration of the hCG trigger, leading to fruitless attempts at retrieval and the so called “empty follicle syndrome.”

The developing eggs of women who have increased LH activity (older women, women with diminished ovarian reserve, and those with PCOS) are inordinately vulnerable to the effects of protracted exposure to LH-induced ovarian testosterone. Because of this, the administration of medications that provoke further pituitary LH release (e.g., clomiphene and Letrozole), drugs that contain LH or hCG (e.g., Menopur), or protocols of ovarian stimulation that provoke increased exposure to the woman’s own pituitary LH (e.g., “flare-agonist protocols”) and the use of “late pituitary blockade” (antagonist) protocols can be prejudicial.

The importance of individualizing COS protocol selection, precision with regard to the dosage and type of hCG trigger used, and the timing of its administration in such cases cannot be overstated. The ideal dosage of urinary-derived hCG (hCG-u) such as Novarel, Pregnyl and Profasi is 10,000U. When recombinant DNA-derived hCG (hCG-r) such as Ovidrel is used, the optimal dosage is 500mcg. A lower dosage of hCG can, by compromising meiosis, increase the risk of egg aneuploidy, and thus of IVF outcome.

There is in my opinion no such condition as “Empty Follicle Syndrome.” All follicles contain eggs. Failure to access those eggs at ER can often be a result of the protocol used for controlled ovarian stimulation.

______________________________________________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

………………………………………………………………..

 

Name: Tracy W

In 2020 (age 42), we had 2 natural pregnancies at 6-8 weeks and miscarried naturally. In 2021, we tried IVF, we had 2 cycles that gave us 11 embryos, only 1 grew and it was abnormal. In July of 2022, we decided to use an egg donor and travel to South Africa to do this. We did a fresh transfer with 1 embryo and froze the rest. All 11 were graded really high but untested. I got pregnant but at my 1st & 2nd ultrasound, there was just an empty sack. I miscarried around 10 weeks after a D&C. In Nov we tried a FET again with 2 embryos. Lining was too thin, 6mm so they increased my estrogen to 6mg orally in AM and 6mg in PM. In 2 days it jumped to 7.3mm and we transferred 2 but they didn’t stick. My doctor then suggested a hysteroscopy and testing the embryos. We tested and have 3 normal embryos (out of 7). The hysteroscopy was performed on day CD 17 (Jan 24 2023) by my OBGYN here in the US and he removed some adhesions. We tried again recently in March 2023 but my lining only got to 5.6mm after 3 extra days with added estrogen (6mg in AM and 6mg in PM plus I was taking a patch every other day from the beginning) so we had to cancel. Why would my lining get thinner after a hysteroscopy and with added estrogen? My SA doctor thinks I need another hysteroscopy between day 1-10 of my cycle and wants to test for chronic endometritis. My OBGYN here doesn’t think I would benefit from another one. I’m also having issues hearing back from him on whether or not he had tested for chronic endometritis. What would you suggest at this point?

Answer:

It was as far back as 1989, when I first published a study that examined the correlation between the thickness of a woman’s uterine lining (the endometrium), and the subsequent successful implantation of embryos in IVF patients. This study revealed that when the uterine lining measured <8mm in thickness by the day of the “hCG trigger” (in fresh IVF cycles), or at the time of initiating progesterone therapy (in embryo recipient cycles, e.g. frozen embryo transfers-FET, egg donation-IVF etc.) , pregnancy and birth rates were substantially improved. Currently, it is my opinion, that an ideal estrogen-promoted endometrial lining should ideally measure at least 9mm in thickness and that an endometrial lining measuring 8-9mm is “intermediate”. An estrogenic lining of <8mm is in most cases unlikely to yield a viable pregnancy.

 

A “poor” uterine lining is usually the result of the innermost layer of endometrium (the basal or germinal endometrium from which endometrium grows) ) not being able to respond to estrogen by propagating an outer, “functional” layer thick enough  to support optimal embryo implantation and development of a healthy placenta (placentation). The “functional” layer ultimately comprises 2/3 of the full endometrial thickness and is the layer that sheds with menstruation in the event that no pregnancy occurs.

 

The main causes of a “poor” uterine lining are:

 

  1. Damage to the basal endometrium as a result of:
    1. Inflammation of the endometrium (endometritis) most commonly resulting from infected products left over following abortion, miscarriage or birth
    2. Surgical trauma due to traumatic uterine scraping, (i.e. due to an over-aggressive D & C)
  2. Insensitivity of the basal endometrium to estrogen due to:
    1. Prolonged , over-use/misuse of clomiphene citrate
    2. Prenatal exposure to diethylstilbestrol (DES).  This is a drug that was given to pregnant women in the 1960’s to help prevent miscarriage
  3. Over-exposure of the uterine lining to ovarian male hormones (mainly testosterone): Older women, women with diminished ovarian reserve (poor responders) and women with polycystic ovarian syndrome -PCOS tend to have raised LH biological activity.. This causes the connective tissue in the ovary (stroma/theca) to overproduce testosterone. The effect can be further exaggerated when certain methods for ovarian stimulation such as agonist (Lupron/Buserelin) “flare” protocols and high dosages of menotropins such as Menopur are used in such cases.
  4. Reduced blood flow to the basal endometrium:

Examples include;

    1. Multiple uterine fibroids – especially when these are present under the endometrium (submucosal)
  1. Uterine adenomyosis (excessive, abnormal invasion of the uterine muscle by endometrial glands).

 

 

“The Viagra Connection”

 

Eighteen years ago years ago, after reporting on the benefit of vaginal Sildenafil (Viagra) for to women who had implantation dysfunction due to thin endometrial linings I was proud to announce the birth of the world’s first “Viagra baby.” Since the introduction of this form of treatment, thousands of women with thin uterine linings have been reported treated and many have gone on to have babies after repeated prior IVF failure.

 

For those of you who aren’t familiar with the use of Viagra in IVF, allow me to provide some context. It was in the 90’s that Sildenafil (brand named Viagra) started gaining popularity as a treatment for erectile dysfunction.  The mechanism by which it acted was through increasing penile blood flow through increasing nitric oxide activity. This prompted me to investigate whether Viagra administered vaginally, might similarly improve uterine blood flow and in the process cause more estrogen to be delivered to the basal endometrium and thereby increase endometrial thickening. We found that when Viagra was administered vaginally it did just that! However oral administration was without any significant benefit in this regard.  We enlisted the services of a compound pharmacy to produce vaginal Viagra suppositories. Initially, four (4) women with chronic histories of poor endometrial development and failure to conceive following several advanced fertility treatments were evaluated for a period of 4-6 weeks and then underwent IVF with concomitant Viagra therapy. Viagra suppositories were administered four times daily for 8-11 days and were discontinued 5-7 days prior to embryo transfer in all cases.

 

Our findings clearly demonstrated that vaginal Viagra produced a rapid and profound improvement in uterine blood flow and that was followed by enhanced endometrial development in all four cases. Three (3) of the four women subsequently conceived. I expanded the trial in 2002 and became the first to report on the administration of vaginal Viagra to 105 women with repeated IVF failure due to persistently thin endometrial linings. All of the women had experienced at least two (2) prior IVF failures attributed to intractably thin uterine linings. About 70% of these women responded to treatment with Viagra suppositories with a marked improvement in endometrial thickness. Forty five percent (45%) achieved live births following a single cycle of IVF treatment with Viagra The miscarriage rate was 9%. None of the women who had failed to show an improvement in endometrial thickness following Viagra treatment achieved viable pregnancies.

 

Following vaginal administration, Viagra is rapidly absorbed and quickly reaches the uterine blood system in high concentrations. Thereupon it dilutes out as it is absorbed into the systemic circulation. This probably explains why treatment is virtually devoid of systemic side effects

 

It is important to recognize that Viagra will NOT be effective in improving endometrial thickness in all cases. In fact, about 30%-40% of women treated fail to show any improvement. This is because in certain cases of thin uterine linings, the basal endometrium will have been permanently damaged and left unresponsive to estrogen. This happens in cases of severe endometrial damage due mainly to post-pregnancy endometritis (inflammation), chronic granulomatous inflammation due to uterine tuberculosis (hardly ever seen in the United States) and following extensive surgical injury to the basal endometrium (as sometimes occurs following over-zealous D&C’s).

 

Combining vaginal Viagra Therapy with oral Terbutaline;

In my practice I sometimes recommend combining Viagra administration with 5mg of oral terbutaline. The Viagra relaxes the muscle walls of uterine spiral arteries that feed the basal (germinal) layer of the endometrium while Terbutaline, relaxes the uterine muscle through which these spiral arteries pass. The combination of these two medications interacts synergistically to maximally enhance blood flow through the uterus, thereby improving estrogen delivery to the endometrial lining. The only drawback in using Terbutaline is that some women experience agitation, tremors and palpitations. In such cases the terbutaline should be discontinued. Terbutaline should also not be used women who have cardiac disease or in those who have an irregular heartbeat.

 

About 75% of women with thin uterine linings see a positive response to treatment within 2-3 days. The ones that do not respond well to this treatment are those who have severely damaged inner (basal/germinal) endometrial linings, such that no improvement in uterine blood flow can coax an improved response. Such cases are most commonly the result of prior pregnancy-related endometrial inflammation (endometritis) that sometimes occurs post abortally or following infected vaginal and/or cesarean delivery.

 

Viagra therapy has proven to be a god send to thousands of woman who because of a thin uterine lining would otherwise never have been able to successfully complete the journey “from infertility to family”.

 

 

___________________________________________________

ADDENDUM: PLEASE READ!!

INTRODUCING SHER FERTILITY SOLUTIONS (SFS)

Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

 

Patients are encouraged to share the information I provide, with their treating Physicians and/or to avail themselves of my personal hands-on services, provided through batched IVF cycles that I conduct every 3 months at Los Angeles IVF (LAIVF) Clinic, Century City, Los Angeles, CA.

 

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or,  enroll online on then home-page of my website (www.SherIVF.com). 

 ______________________________________________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

………………………………………………………………..

 

 

 

Name: Mindy D

Hi Dr. Sher , I have scheduled a robotic assisted laparoscopy to remove the endometriomas off of my ovaries based on your advice last year . My procedure description is “robotic assisted laparoscopy , lysis of adhesions , resection / fulgerartion of endometriosis, bilateral cysectomy , chromopertubation, and resection of villar nodule . My question is do you think that is an appropriate technique? I read so many posts against that kind of heat , and I don’t necessarily know if “burning “ it out would help my chances of ivf success in the future. This is being performed by a doctor recommended by my fertility doctor . I’m 40 years old with 3 failed cycles behind me . Any thoughts on this style of surgery for endometriosis? I have pain sometimes but I am mostly doing this to get the cysts off my ovaries for future IVF . Thank for your time , Mindy D .

Answer:

I think we should talk!

 

Please call my assistant, Patti Converse at 702-533-2691 and set up an online consultation with me to discuss!

 

When women with infertility due to endometriosis seek treatment, they are all too often advised to first try ovarian stimulation (ovulation Induction) with intrauterine insemination (IUI) ………as if to say that this would be just as likely to result in a baby as would in vitro fertilization (IVF). Nothing could be further from reality It is time to set the record straight. And hence this communication!

Bear in mind that the cost of treatment comprises both financial and emotional components and that it is the cost of having a baby rather than cost of a procedure. Then consider the fact that regardless of her age or the severity of the condition, women with infertility due to endometriosis are several fold more likely to have a baby per treatment cycle of IVF than with IUI. It follows that there is a distinct advantage in doing IVF first, rather than as a last resort.

So then, why is it that ovulation induction with or without IUI is routinely offered proposed preferentially to women with mild to moderately severe endometriosis? Could it in part be due to the fact that most practicing doctors do not provide IVF services but are indeed remunerated for ovarian stimulation and IUI services and are thus economically incentivized to offer IUI as a first line approach? Or is because of the often erroneous belief that the use of fertility drugs will in all cases induce the release (ovulation) of multiple eggs at a time and thereby increase the chance of a pregnancy. The truth however is that while normally ovulating women (the majority of women who have mild to moderately severe endometriosis) respond to ovarian stimulation with fertility drugs by forming multiple follicles, they rarely ovulate > 1 (or at most 2) egg at a time. This is because such women usually only develop a single dominant follicle which upon ovulating leaves the others intact. This is the reason why normally ovulating women who undergo ovulation induction usually will not experience improved pregnancy potential, nor will they have a marked increase in multiple pregnancies. Conversely, non-ovulating women (as well as those with dysfunctional ovulation) who undergo ovulation induction, almost always develop multiple large follicles that tend to ovulate in unison. This increases the potential to conceive along with an increased risk multiple pregnancies.

 

So let me take a stab at explaining why IVF is more successful than IUI or surgical correction in the treatment of endometriosis-related infertility:

  1. The toxic pelvic factor: Endometriosis is a condition where the lining of the uterus (the endometrium) grows outside the uterus. While this process begins early in the reproductive life of a woman, with notable exceptions, it only becomes manifest in the 2ndhalf of her reproductive life. After some time, these deposits bleed and when the blood absorbs it leaves a visible pigment that can be identified upon surgical exposure of the pelvis. Such endometriotic deposits invariably produce and release toxins” into the pelvic secretions that coat the surface of the membrane (the peritoneum) that envelops all abdominal and pelvic organs, including the uterus, tubes and ovaries. These toxins are referred to as “the peritoneal factor”. Following ovulation, the egg(s) must pass from the ovary (ies), through these toxic secretions to reach the sperm lying in wait in the outer part the fallopian tube (s) tube(s) where, the sperm lie in waiting. In the process of going from the ovary(ies) to the Fallopian tube(s) these eggs become exposed to the “peritoneal toxins” which alter s the envelopment of the egg (i.e. zona pellucida) making it much less receptive to being fertilized by sperm. As a consequence, if they are chromosomally normal such eggs are rendered much less likely to be successfully fertilized. Since almost all women with endometriosis have this problem, it is not difficult to understand why they are far less likely to conceive following ovulation (whether natural or induced through ovulation induction). This “toxic peritoneal factor impacts on eggs that are ovulated whether spontaneously (as in natural cycles) or following the use of fertility drugs and serves to explain why the chance of pregnancy is so significantly reduced in normally ovulating women with endometriosis.
  2. The Immunologic Factor: About one third of women who have endometriosis will also have an immunologic implantation dysfunction (IID) linked to activation of uterine natural killer cells (NKa).  This will require selective immunotherapy with Intralipid infusions, and/or heparinoids (e.g. Clexane/Lovenox) that is much more effectively implemented in combination with IVF.
  3. Surgical treatment of mild to moderate endometriosis does not usually improve pregnancy potential:. The reason is that endometriosis can be considered to be a “work in progress”. New lesions are constantly developing. So it is that for every endometriotic seen there are usually many non-pigmented deposits that are in the process of evolving but are not yet visible to the naked eye and such evolving (non-visible) lesions can also release the same “toxins that compromise fertilization. Accordingly, even after surgical removal of all visible lesions the invisible ones continue to release “toxins” and retain the ability to compromise natural fertilization. It also explains why surgery to remove endometriotic deposits in women with mild to moderate endometriosis usually will fail to significantly improve pregnancy generating potential. In contrast, IVF, by removing eggs from the ovaries prior to ovulation, fertilizing these outside of the body and then transferring the resulting embryo(s) to the uterus, bypasses the toxic pelvic environment and is therefore is the treatment of choice in cases of endometriosis-related infertility.
  4. Ovarian Endometriomas: Women, who have advanced endometriosis, often have endometriotic ovarian cysts, known as endometriomas. These cysts contain decomposed menstrual blood that looks like melted chocolate…hence the name “chocolate cysts”. These space occupying lesions can activate ovarian connective tissue (stroma or theca) resulting in an overproduction of male hormones (especially testosterone). An excess of ovarian testosterone can severely compromise follicle and egg development in the affected ovary. Thus there are two reasons for treating endometriomas. The first is to alleviate symptoms and the second is to optimize egg and embryo quality. Conventional treatment of endometriomas involves surgical drainage of the cyst contents with subsequent removal of the cyst wall (usually by laparoscopy), increasing the risk of surgical complications. We recently reported on a new, effective and safe outpatient approach to treating endometriomas in women planning to undergo IVF. We termed the treatment ovarian Sclerotherapy.  The process involves; needle aspiration of the “chocolate colored liquid content of the endometriotic cyst, followed by the injection of 5% tetracycline hydrochloride into the cyst cavity. Such treatment will, more than 75% of the time result in disappearance of the lesion within 6-8 weeks. Ovarian sclerotherapy can be performed under local anesthesia or under conscious sedation. It is a safe and effective alternative to surgery for definitive treatment of recurrent ovarian endometriomas in a select group of patients planning to undergo IVF

 

 I am not suggesting that all women with infertility-related endometriosis should automatically resort to IVF. Quite to the contrary…. In spite of having reduced fertility potential, many women with mild to moderate endometriosis can and do go on to conceive on their own (without treatment). It is just that the chance of this happening is so is much lower than normal.

 

IN SUMMARY: For young ovulating women (< 35 years of age ) with endometriosis, who have normal reproductive anatomy and have fertile male partners, expectant treatment is often preferable to IUI or IVF. However, for older women, women who (regardless of their age) have any additional factor (e.g. pelvic adhesions, ovarian endometriomas, male infertility, IID or diminished ovarian reserve-DOR) IVF should be the primary treatment of choice.

 

I strongly recommend that you visit www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select.  Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

  • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
  • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
  • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
  • The Fundamental Requirements For Achieving Optimal IVF Success
  • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
  • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF:
  • The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
  • Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
  • Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
  • Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
  • Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management: (Case Report)
  • Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
  • Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
  • Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
  • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas
  • Should IVF Treatment Cycles be provided uninterrupted or be Conducted in 7-12 Pre-scheduled “Batches” per Year
  • A personalized, stepwise approach to IVF
  • How Many Embryos should be transferred: A Critical Decision in IVF?
  • Endometriosis and Immunologic Implantation Dysfunction (IID) and IVF
  • Endometriosis and Infertility: Why IVF Rather than IUI or Surgery Should be the Treatment of Choice.
  • Endometriosis and Infertility: The Influence of Age and Severity on Treatment Options
  • Early -Endometriosis-related Infertility: Ovulation Induction (with or without Intrauterine Insemination) and Reproductive Surgery Versus IVF
  • Treating Ovarian Endometriomas with Sclerotherapy.
  • Effect of Advanced Endometriosis with Endometriotic cysts (Endometriomas) on IVF Outcome & Treatment Options.
  • Deciding Between Intrauterine Insemination (IUI) and In Vitro Fertilization (IVF).
  • Intrauterine Insemination (IUI): Who Needs it & who Does Not: Pro’s &
  • Induction of Ovulation with Clomiphene Citrate: Mode of Action, Indications, Benefits, Limitations and Contraindications for its use
  • Clomiphene Induction of Ovulation: Its Use and Misuse!

 

 

 

______________________________________________________

ADDENDUM: PLEASE READ!!

INTRODUCING SHER FERTILITY SOLUTIONS (SFS)

Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

 

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or,  enroll online on then home-page of my website (www.SherIVF.com). 

 

PLEASE SPREAD THE WORD ABOUT SFS!

 

Geoff Sher

_________________________________________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

………………………………………………………………..

 

 

Name: Alexandra C

Dear doctor Sher,

I am 33 years old and my husband is 36. After 5 months of trying to conceive (that was back in November 2022), we decided to visit a fertility specialist in
Switzerland where we are currently located. He ran the basic hormonal exams on the 4th day of my cycle (4th day from flow, 5th day from light spotting) identifying a low AMH (0.56 ng/ml). For reference my estradiol levels were 723 pmol/l, my FSH was 4.5 IU (I know high estradiol could have suppressed this hormone) and my LH was 7.4 IU. He did not check for testosterone or DHEA levels. AFC on day 8 of the cycle was 5 (only in one ovary – I should probably mention that only one ovary has a normal size while the other is small which I know is another indication of a reduced ovarian reserve). I did ovulate slightly earlier than what I am used to that month and had my period earlier as well. Ovulation was confirmed on day 10 (through ovulation kits I have confirmed that I am ovulating between the 11th-14th day). Follicle was of mature size. Progesterone levels after ovulation were normal (luteal phase duration is also normal – 15-16 days long).Thickness of uterus was good as well. In the following months, I also did a hysteroscopy and everything appeared normal. I should probably mention that my husband had 1% of normal sperm morphology (everything else is good). Thus, we decided to proceed with IVF and more precisely, ICSI.

My doctor had me on Primolut n for 5 days and on the 4th day after I stopped taking it, I got my period. On the second day of my period, I started taking Pergoveris
350 IU per day. I took it for 3 days and then I went in for blood work and an ultrasound (STIM DAY4). The ultrasound showed only 4 very small follicles, two in each
ovary. The doctor commented that they were still small and that the bloodwork corresponded to their small size. He augmented the dose to 400 IU per day for 3 days again. On STIM DAY7, I went again for bloodwork and an ultrasound. Still he could only see 4 follicles (13.5 mm, 10.8 mm, 10.9 mm, 9.8 mm). Oestradiol levels were around 1230 pmol/l while LH levels were more than 9 IU. On that day he increased the dose of Pergoveris to 450 IU and on that night I started taking Cetrotide 0,25 mg. Two days after, I went for another round of blood work and ultrasound (STIM DAY9) where he told me that estradiol was increased but did not mention how much. Ultrasound showed 5 follicles this time (two smaller than 10 mm, 1 at 11 mm, 1 at 12.5 mm and one at 18.5 mm). Thus, on that day I took another 450 IU of Pergoveris during the day, a Cetrotide 0.25 mg and Ovitrelle 250 μg during the night. He advised us to go through with the retrieval of eggs just to see also their quality, although in reality there was only one mature follicle (he also mentioned that my uterus was ready). I did go through the retrieval yesterday (36 hours after trigger shot) and they informed me that they had collected two eggs but both of them were immature. We were surprised as one of the follicles seemed to have had the appropriate size. The day of the retrieval would have been day 11 of stimulation. On day 10, I received no hormones.

I apologize for not having more details with regards to my blood exams but this is what I remember from what he had shown me at the office. I don’t have any of the blood work results from the ovarian stimulation phase. I am not sure if the protocol was the right one for my case or if I have an egg quality problem along with the poor response and the problem of the low ovarian reserve. I am starting to believe that I am a lost cause and that I should not proceed with another round of IVF. I always wanted to have at least one biological kid but I also wanted to adopt. We are not considering donor eggs. I would very much appreciate your expert opinion on my case. I did read your response here https://sherfertilitysolutions.com/ask-our-doctors/egg-immaturity/ and if I understood
correctly there were some things that the doctor could have done differently. Therefore, my question is am I a lost cause or some modifications to the protocol could bring better results?

P.S. Doctor mentioned that I may be a poor responder because the FSH receptors on my ovaries do not communicate properly with my pituitary gland which is shown from me not responding to high doses of FSH. Could that be a possibility and is there anything that can be done about it?

Also, I have been taking these vitamins – http://www.fol-ino.ch/women/fr/index.php – that my doctor prescribed but I wonder If I should have been taking something else (CoEnzyme Q10 and DHEA along with folic acid and Vitamin D?) as they seem to be appropriate only for people with PCOS. I have taken them for 2.5 months.

Thank you in advance for your response and thank you for taking the time to read my very long email.

Kind regards,
Alexandra

Answer:

Hi Alexandra,

Yes indeed, based on your AMH blood level, you have prematurely developed diminished ovarian reserve (DOR) and this means you have very much reduced egg population (which cannot be replenished) and accordingly  will propagate very few follicles. In addition, women with DOR often have an adverse ovarian hormonal environment that is not condusive to optimal egg development during ovarian stimulation. To avoid this you will need an individualized strategic approach to ovarian stimulation. A “Recipe / “one size fits alll” approach will likely  not work (see below). However, because you are still relatively young, given the ideal protocol and implementation thereof, you should be able to do much better and yes, have a baby through IVF. The progressive decline in  ovarian reserve will continue and can accelerate, so time is of the essence. You simply do not have time to waste on other alternatives than IVF.

You are absolutely NOT a hopeless case. In fact my practice is largely made up of patients like you who=se chances are even poorer because they are usually older.

Good luck!

Geoff Sher

PS: Feel free to contact my assistant, Patti Conve3rse at 702-633-2691 or at conciege@ sherivf.com.

__________________________________________________________________________________

It is primarily the egg (rather than the sperm) that determines the chromosomal integrity (karyotype) of the embryo, the most important determinant of egg/embryo competency”. A “competent” egg is therefore one that has a normal karyotype and has the best potential to propagate a “competent” embryo. In turn, a “competent embryo is one that possesses the highest potential to implant and develop into a normal, healthy, baby.

When it comes to reproductive performance, humans are the least efficient of all mammals. Even in young women under 35y, at best only 2 out of 3 eggs are chromosomally numerically normal (euploid). The remainder will have an irregular number of chromosomes (aneuploid) and are thus “incompetent”. The incidence of egg aneuploidy increases with age such by age 39 years, 3 in 4 are “competent”, and by the mid-forties, at best one in 10 are likely to be aneuploid. The fertilization of an aneuploid egg will inevitably lead to embryo aneuploidy (“incompetence”). As previously stated,   an aneuploid embryo cannot propagate a normal pregnancy

Within 38-42 hours of the initiation of the spontaneous pre-ovulatory luteinizing hormone (LH) surge (and also following administration of the human chorionic gonadotropin (hCG) “trigger” shot, given to induce egg maturation after ovarian stimulation with fertility drugs), the egg embarks on a rapid maturational process that involves halving of its 46 chromosomes to 23. During this process, (known as meiosis) 23 chromosomes are retained within the nucleus of the egg while the remaining 23 chromosomes are expelled in a membrane envelopment, from the egg nucleus. This small structure known as the polar body, comes to lie immediately below the “shell” of the egg (the zona pellucida) and is known as the 1st polar body or PB-1. The sperm, in the process of its maturation also undergoes meiosis divides into two separate functional gametes, each containing 23 chromosomes (half its original number of 46 chromosomes).  With subsequent fertilization, the 23 chromosomes of the egg now fuse with the 23 chromosomes of the mature sperm resulting in the development of an embryo with  46 chromosomes (the normal human genome) comprising a combination of the genetic material from both partners. For the embryo to have exactly 46 chromosomes (the euploid number), both the mature egg and mature spermatozoon must contain exactly 23 chromosomes. Only such euploid embryos are “competent” (capable of developing into healthy babies). Those with an irregular number of chromosomes (aneuploid embryos) are “incompetent” and are incapable of propagating healthy babies. While embryo “incompetence” can result from either egg or sperm aneuploidy, it usually stems from egg aneuploidy. However, in cases of moderate or severe male factor infertility, the sperm’s contribution to aneuploidy of the embryo can be significantly greater.

While embryo ploidy (numerical chromosomal integrity) is not the only determinant of its “competency, it is by far the most important and in fact is a rate-limiting factor in human reproduction. It is causal in the vast majority of cases of “failed nidation which in turn is responsible for most cases of a failed pregnancy (natural or assisted) and causes most sporadic early pregnancy losses (both chemical gestations and miscarriages) as well as  many chromosomal birth defects such as Turner syndrome (X-monosomy ) Down syndrome (trisomy 21) and Edward syndrome (trisomy 18) .

In most cases, embryos that develop too slowly as well as those that grow too fast (i.e. ones that by day 3 post-fertilization comprise fewer than 6 cells or more than 9 cells) and/or embryos that contain cell debris or “fragments” are usually aneuploid and are thus unable to propagate a healthy pregnancy (“incompetent”). Additionally, embryos that fail to survive in culture to the blastocyst stage are also almost always aneuploid/”incompetent”.

At a certain point in the later stage of a woman’s reproductive career, the number of remaining eggs in her ovaries falls below a certain threshold, upon which she is unable to respond optimally to fertility drugs. Often times this is signaled by a rising day 3 basal blood follicle stimulating hormone (FSH) level (>9.0MIU/ml) and a falling blood anti-Mullerian hormone (AMH) level (<2.0ng/ml or <15nmol/L). Such women who have  diminished ovarian reserve (DOR) produce fewer eggs in response to ovarian stimulation. While DOR is most commonly encountered in women over 40 years of age it can and indeed also can occur in much younger women.

A few important (but often overlooked concepts should be considered in this regard:

  • Age: It is advancing chronologic age and NOT declining ovarian reserve (as evidenced by abnormal blood AMH or FSH that results in an increased incidence of egg/embryo “incompetence” due to aneuploidy
  • The ovaries and developing eggs of women with DOR (regardless of age) are highly susceptible to the adverse effect of excessive Luteinizing Hormone (LH)-induced, ovarian overproduction of male hormones (e,g. testosterone and androstenedione). While a little testosterone produced by the ovary promotes normal follicle growth and orderly egg development excessive testosterone has a converse effect. That is why in older women and those who regardless of their age have DOR (and thus excessive LH bioavailability and increased ovarian testosterone production), the use of ovarian stimulation protocols that fail to down-regulate LH activity prior to initiating ovarian stimulation with gonadotropins, often prejudices egg/embryo quality and IVF outcome.
  • Simply stated, while age is certainly the most important factor in determining the incidence of egg/embryo aneuploidy, women with DOR (regardless of their age), are less likely to propagate euploid (competent) eggs/embryos. While virtually nothing can be done to lower the incidence of age related aneuploidy, it is indeed possible to avoid a further decrease in egg/embryo “competency”  by individualizing the protocols of ovarian stimulation used.
  • My preferred protocols for women who have relatively normal ovarian reserve:
  • The conventional long pituitary down regulation protocol: BCP are commenced early in the cycle and continued for at least 10 days. Starting 3 days before the BCP is to be discontinued, it is overlapped with an agonist such as Lupron 10U daily for three (3) days and continued until menstruation begins (which should ensue within 5-7 days of stopping the BCP). At that point an US examination is done along with a baseline measurement of blood estradiol to exclude a functional ovarian cyst. Daily Lupron (10U) is continued and an FSH-dominant gonadotropin such as Follistim, Puregon or Gonal-f daily is administered daily falong with 37.5U of Menopur (an FSH/LH combination) for 2 days. On the 3rd day the gonadotropin dosage is reduced by about one half and the dosage of Menopur is increased to 75U daily. Daily ultrasound and blood estradiol measurements are conducted starting on the 7th or 8th day of gonadotropin administration and continued until daily ultrasound follicle assessments indicate that most follicles have fully developed. At this point egg maturation is “triggered” using an intramuscular injection of a recombinant hCGr (Ovidrel) 500mcg or urinary derived hCGu (Pregnyl/Profasi/Novarel) 10,000U. And an egg retrieval is scheduled for 36h later.
  • The agonist/antagonist conversion protocol (A/ACP): This is essentially the same as the conventional long down regulation protocol (see “a”-as above), except that with the onset of post-BCP menstruation, the agonist is supplanted by daily administration of a GnRH antagonist (e.g. Ganirelix, Cetrotide or Orgalutron) at a dosage of 125-250mcg daily until the day of the “trigger”. When it comes to women who have DOR I favor the use of the A/ACP, adding supplementary human growth hormone (HGH). In cases where the DOR is regarded as severe (AMH=<0.2), I often augment  the AACP protocol by using estrogen priming for 7-9 days prior to or with the commencement of gonadotropin therapy; For this I prescribe E2 skin patches  or intramuscular  estradiol valerate (Delestrogen), prior to or sometimes concurrent with, the  commencement of the GnRH antagonist administration.
  • The following Ovarian stimulation protocols are in my opinion best avoided in stimulating olderf women and /or thosed who regardless of age , have  DOR :
  1. Microdose agonist (e.g. Lupron) “flare” protocols which result in an out-pouring of pituitary-LH at the critical time that ovarian follicles and eggs start developing/growing.
  2. High dosages of LH -containing fertility drugs (e.g. Menopur).
  3. Supplementation with preparations that are testosterone-based
  4. Supplementation with DHEA (which is converted to testosterone in the ovaries.
  5. Clomiphene citrate or Letrozole which cause increased release of LH and thus increase ovarian male hormone (testosterone and androstenedione output.
  6. “Triggering” egg maturation using too low a dosage of hCG (e.g. 5,000U rather than 10,000U) or Ovidrel (e.g. 250mcg of Ovidrel rather than 500mcg)
  7. “Triggering” women who have DOR, with an agonist (alone)such as Lupron Superfact/ Buserelin/Aminopeptidyl/Decapeptyl.
  • Preimplantation Genetic Screening (PGS):

The introduction of preimplantation genetic testing/screening (PGT/PGS) for e permits identification of all the chromosomes in the egg and embryo (full karyotyping) allowing for the  identification of the most “competent” (euploid) embryos for selective transfer to the uterus. This vastly improves the efficiency and success of the IVF process and renders us fare better equipped us to manage older women and those who regardless of their age, have DOR.

Please visit my new Blog on this very site, www. SherIVF.com, find the “search bar” and type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select.  Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly

 

  • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
  • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
  • The Fundamental Requirements For Achieving Optimal IVF Success
  • Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
  • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
  • The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
  • A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
  • Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
  • Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
  • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
  • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
  • Blastocyst Embryo Transfers Should be the Standard of Care in IVF
  • Frozen Embryo Transfer (FET) versus “Fresh” ET: How to Make the Decision
  • Frozen Embryo Transfer (FET): A Rational Approach to Hormonal Preparation and How new Methodology is Impacting IVF.
  • Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
  • Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation.
  • Preimplantation Genetic Testing (PGS) in IVF: It Should be Used Selectively and NOT be Routine.
  • Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
  • PGS in IVF: Are Some Chromosomally Abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
  • PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
  • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
  • Traveling for IVF from Out of State/Country–
  • A personalized, stepwise approach to IVF
  • How Many Embryos should be transferred: A Critical Decision in IVF.
  • The Role of Nutritional Supplements in Preparing for IVF
  • Premature Luteinization (“the premature LH surge): Why it happens and how it can be prevented.
  • IVF Egg Donation: A Comprehensive Overview

 

___________________________________________________

ADDENDUM: PLEASE READ!!

INTRODUCING SHER FERTILITY SOLUTIONS (SFS)

Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

 

 

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or,  enroll online on then home-page of my website (www.SherIVF.com). 

 

PLEASE SPREAD THE WORD ABOUT SFS!

 

Geoff Sher

____________________________________________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

………………………………………………………………..

 

 

 

 

Name: Abi S

Hi Dr Sher

I’m a 30 year old living in London. I have had 2 IVF cycles, but after both, all embryos stopped growing after 2-3 days post egg retrieval. I was also told I have mild PCO in my right ovary. Left ovary is normal. I don’t have any other symptoms of PCOS and have regular monthly cycles and also ovulate, so they concluded that I have unexplained infertility.
The first cycle was with with Puregon (225iu reduced to 150iu), orgalutran and triggered with Mochida HCG 10,000 IU.
They retrieved 21 eggs, 9 matured, 5 fertilised but all stopped growing between day 2-3.
The second cycle I was given menopur 225iu and orgalutran and triggered with mochida hcg 15,000 iu. This time 10 eggs were retrieved but only 2 were matured. Both fertilised one stopped growing after day 2, and one stopped at day 4.
Both triggers were when follicles measured around 17/18mm and during both cycles I took folic acid and a multivitamin.
I saw my doctor for a follow up today and he joked that I can just be an Aunty one day instead. He said that it’s likely a genetic issue with my eggs. This was very painful for me to hear but forced me to start researching into why embryos stop growing and why so many of mine were immature but I can’t seem to find a definitive answer. Some places say a lot about PCOS and needing to use myo inositol or metformin for egg quality and others I see that the trigger is important. After my doctors joke about being an Aunty it has worried me to think I may not actually be able to have children of my own which is my strongest desire. Do you think he’s right after my two failures?

Thanks

Abi

Answer:

Very respectfully, this is not likely to be a uniform genetic issue. More than likely ity has to do with the protocol used for ovarian stimulation (see below).

The importance of the IVF stimulation protocol on egg/embryo quality cannot be overstated. This factor seems often to be overlooked or discounted by t IVF practitioners who use a “one-size-fits-all” approach to ovarian stimulation. My experience is that the use of individualized/customized COS protocols can greatly improve IVF outcome. While no one can influence underlying genetics or turn back the clock on a woman’s age, any competent IVF specialist should be able to tailor the protocol for COS to meet the individual needs of the patient.

Gonadotropins (LH and FSH), whether produced by the pituitary gland or administered by way of fertility drugs, have different “targeted” sites of action in the ovary. FSH targets cells that line the inner wall of the follicle (granulosa cells) and also form the cumulus cells that bind the egg to the inner surface of the follicle. Granulosa cells are responsible for estrogen production.

LH, on the other hand, targets the ovarian connective tissue (stroma/theca) that surrounds ovarian follicles resulting in the production of male hormones such as testosterone (predominantly), androstenedione and DHEA. These androgens are then transported to the granulosa cells of the adjacent follicles in a “bucket brigade fashion”. There FSH converts testosterone to estradiol, causing granulosa cells to multiply (proliferate) and produce estradiol, follicles to  grows and eggs to develop (ovogenesis) It follows that  ovarian androgens (mainly testosterone) is absolutely indispensable to follicle/ egg growth and development.

However, the emphasis is on a “normal” amount of testosterone. Over-exposure of the follicle to testosterone can in my opinion,  compromise egg development and lead to an increased likelihood of chromosomal irregularities (aneuploid) following LH/hCG-induced egg maturational division (meiosis) and compromise embryo “competency/quality.

Ovarian androgens can also reach the uterine lining where they sometimes will compromise estrogen receptor -induced endometrial growth and development.

A significant percentage of  older women and those who have diminished ovarian reserve (DOR) have increased LH activity is increased. Such women either over-produce LH and/or the LH produced is far more biologically active. Chronically increased LH activity leads to overgrowth of ovarian connective tissue (stroma/theca). This condition, which is often referred to as Stromal Hyperplasia or hyperthecosis can result in  excessive ovarian androgen/testosterone production and poorer egg-embryo quality/competency, Similarly, women with polycystic ovarian syndrome (PCOS), also characteristically have Stromal hyperplasia/hyperthecosis due to chronically increased LH activity. Thus they too often manifest with increased ovarian androgen production. It is therefore not surprising that “poor egg/embryo quality” is often also a feature of PCOS.

In my opinion, the over-administration of LH-containing menotropins such as Menopur, [which is comprised of roughly equal amount of FSH and   hCG ,which acts similar to LH)], to older women, women with DOR and those who have PCOS can also lead to reduced egg/embryo competency . Similarly, drugs such as clomiphene or Letrozole that cause the pituitary gland to release excessive amounts of LH, are also potentially harmful to egg development and in my opinion, are best omitted from IVF COS protocols. This is especially the case when it comes to older women and those with DOR, who in my opinion should preferably be stimulated using FSH-dominant products such as Follistim, Puregon, Fostimon and Gonal-F. 

Gonadotropin releasing hormone agonists (GnRHa): GnRHa such as Lupron, Buserelin, Superfact, Gonopeptyl etc. are often used to launch ovarian stimulation cycles. They act by causing an initial outpouring followed by a depletion of pituitary gonadotropins. This results in LH levels falling to low concentrations, within 4-7 days, thereby establishing a relatively “LH-free environment”. When GnRHa are administered for about 7 days prior to initiating gonadotropin stimulation (“long” pituitary down-regulation”), the LH depletion that will exist when COS is initiated, will usually be protective of subsequent egg development. In contrast, when the GnRHa administration commences along with the initiation of gonadotropin therapy, there will be a resultant immediate surge in the release of pituitary LH with  the potential to increase ovarian testosterone to egg-compromising levels , from the outset of COS. This, in my opinion could be particularly harmful when undertaken in older women and those who have DOR.

GnRH-antagonists such as Ganirelix, Cetrotide and Orgalutron, on the other hand, act very rapidly (within hours) to block pituitary LH release. The purpose in using GnRH antagonists is to prevent the release of LH during COS. In contrast, the LH-lowering effect of GnRH agonists develops over a number of days.

GnRH antagonists are traditionally given, starting after  5th -7th day of gonadotropin stimulation. However, when this is done in older women and those (regardless of age) who have DOR, LH-suppression might be reached too late to prevent the deleterious effect of excessive ovarian androgen production on egg development in the early stage of ovarian stimulation. This is why, it is my preference to administer GnRH-antagonists, starting at the initiation of gonadotropin administration.

Preferred Protocols for Controlled Ovarian Stimulation (COS):

  • Long GnRH Agonist Protocols: The most prescribed protocol for agonist/gonadotropin administration is the so-called “long protocol”. An agonist (usually, Lupron) is given either in a natural cycle, starting 5-7 days prior to menstruation or is overlapped with the BCP for two days whereupon the latter is stopped and the Lupron, continued until menstruation ensues. The agonist precipitates a rapid rise in FSH and LH level, which is rapidly followed by a precipitous decline in the blood level of both, to near zero. This is followed by uterine withdrawal bleeding (menstruation) within 5-7 days of starting the agonist treatment, whereupon gonadotropin treatment is initiated (preferably within 7-10 days of the onset of menses) while daily Lupron injections continue, to ensure a relatively “low LH- environment”. Gonadotropin administration continues until the hCG trigger.
  • Short (“Flare”) GnRH-agonist (GnRHa) Protocol: Another GnRHa usage for COS is the so called “(micro) flare protocol”. This involves initiating gonadotropin therapy commensurate with initiation of gonadotropin administration. The supposed objective is to deliberately allow Lupron to elicit an initial surge (“flare”) in pituitary FSH release in order to augment FSH administration by increased FSH production. Unfortunately, this “springboard effect” constitutes “a double-edged sword”. While it indeed increases the release of FSH, it at the same time causes a surge in LH release. The latter can evoke excessive ovarian stromal/thecal androgen production which could potentially compromise egg quality, especially when it comes to older women and women with DOR. I am of the opinion that by evoking an exaggerated ovarian androgen response, such “(micro) flare protocols” can harm egg/embryo quality and reduce IVF success rates, especially when it comes to COS in older women, and in women with diminished ovarian reserve. Accordingly, I do not prescribe such protocols to my IVF patients
  • Long-Agonist/Antagonist Conversion Protocol (A/ACP):With a few (notable) exceptions I preferentially advocate this protocol for many of my patients. With the A/ACP, as with the long protocol (see above) the woman again prepares to launch her stimulation cycle by taking a BCP for at least ten days before overlapping with an agonist such as Lupron. However, when about 5-7 days later her menstruation starts, she supplants the agonist with a with 250 mcg) of an antagonist (e.g. Ganirelix, Orgalutron or Cetrotide). Within a few days of this switch-over, gonadotropin stimulation is commenced. Both the antagonist and the gonadotropins are then continued until the hCG trigger. The purpose in switching from agonist to antagonist is to intentionally allow only a very small amount of the woman’s own pituitary LH to enter her blood and reach her ovaries, while at the same time preventing a large amount of LH from reaching her ovaries. This is because while a small amount of LH is essential to promote and optimize FSH-induced follicular growth and egg maturation, a large concentration of LH can trigger over-production of ovarian stromal testosterone, with an adverse effect of follicle/egg/embryo quality. Moreover, since testosterone also down-regulates estrogen receptors in the endometrium, an excess of testosterone can also have an adverse effect on endometrial growth. Also, since agonists might suppress some ovarian response to the gonadotropin stimulation, antagonists do not do so. It is for this reason that the A/ACP is so well suited to older women and those with some degree of diminished ovarian reserve.
  • Agonist/antagonist conversion protocol with estrogen priming:Patients start their treatment cycle on a combined (monophasic) birth control pill-BCP (e.g., Marvelon, Desogen, Orthonovum 135; Low-Estrin…etc.)  for at least 8-10 days (depending on individual circumstances), before commencing controlled ovarian stimulation for IVF. With this approach, a GnRH agonist (e.g. Lupron/Superfact/Buserelin/Decapeptyl etc.) is continued until menstruation ensues (usually 5-7 days after commencement of the GnRH-agonist). At this point, the GnRH-agonist is SUPPLANTED with 250mcg GnRH antagonist (e.g. Ganirelix/Cetrotide, Orgalutron) and daily estradiol(E2) “priming” commences using either E2 skin-patches or intramuscular estradiol valerate (Delestrogen) injections, twice weekly while continuing the administration of the GnRH antagonist. Seven (7) days after commencing the E2 skin patches or intramuscular Delestrogen, daily injections of recombinant FSH-(e.g., Follistim/Gonal-F/Puregon)  + menotropin (e.g., Menopur)  therapy begins.. This is continued at a modified dosage, along with E2 patches or Delestrogen injections) until the “hCG trigger”. The egg retrieval is performed 36 hours later.

There are a few potential drawback to the use of the A/ACP. We have learned that prolonged use of a GnRH antagonist throughout the ovarian stimulation process can compromise the predictive value of serial plasma E2 measurements to evaluate follicle growth and development. It appears that when the antagonist is given throughout stimulation, the blood E2 levels tend to be significantly lower than when the agonist alone is used or where antagonist treatment is only commenced 5-7 days into the ovarian stimulation process. The reason for this is presently unclear. Accordingly, when the A/ACP is employed, we rely more on follicle size monitoring than on serial blood E2 trends to assess progress.

Also, younger women (under 30 years) and women with absent, irregular or dysfunctional ovulation, and those with polycystic ovarian syndrome are at risk of developing life-threatening Severe Ovarian Hyperstimulation Syndrome (OHSS). The prediction of this condition requires daily access to accurate blood E2 levels. Accordingly, we currently tend to refrain from prescribing the A/ACP in such cases, preferring instead use the “standard long-protocol” approach.

  • Short-GnRH antagonist protocols:The use of GnRH antagonists as currently prescribed in ovarian stimulation cycles (i.e. the administration of 250mcg daily starting on the 6th or 7th day of stimulation with gonadotropins) may be problematic, especially in women over 39 yrs., women with diminished ovarian reserve (i.e. “poor responders” to gonadotropins), and women with PCOS. Such women tend to have higher levels of LH to start with and as such the initiation of LH suppression with GnRH antagonists so late in the cycle (usually on day 6-7) of stimulation fails to suppress LH early enough to avoid compromising egg development. This can adversely influence egg/embryo quality and endometrial development. As is the case with the “microflare” approach (see above) the use of GnRH antagonist protocols in younger women who have normal ovarian reserve, is acceptable. Again, for reasons of caution, and because I see no benefit in doing so, I personally never prescribe this approach for my patients. Presumably, the reason for the suggested mid-follicular initiation of high dose GnRH antagonist is to prevent the occurrence of the so called “premature LH surge”, which is known to be associated with “follicular exhaustion” and poor egg/embryo quality. However the term “premature LH surge” is a misnomer and the concept of this being a “terminal event” or an isolated insult is erroneous. In fact, the event is the culmination (end point) of the progressive escalation in LH (“a staircase effect”) which results in increasing ovarian stromal activation with commensurate growing androgen production. Trying to improve ovarian response and protect against follicular exhaustion by administering GnRH antagonists during the final few days of ovarian stimulation is like trying to prevent a shipwreck by removing the tip of an iceberg.
  • Short-GnRH-agonist (“micro-flare”) protocols:Another approach to COH is by way of so-called “microflare protocols”. This involves initiating gonadotropin therapy simultaneously with the administration of GnRH agonist. The intent is to deliberately allow Lupron to affect an initial surge (“flare”) in pituitary FSH release to augment ovarian response to the gonadotropin medication. Unfortunately, this approach represents “a double-edged sword” as the resulting increased release of FSH is likely to be accompanied by a concomitant (excessive) rise in LH levels that could evoke excessive production of male hormone by the ovarian stroma. The latter in turn could potentially compromise egg quality, especially in women over 39 years of age, women with diminished ovarian reserve, and in women with polycystic ovarian syndrome (PCOS) – all of whose ovaries have increased sensitivity to LH. In this way, “microflare protocols” can potentially hinder egg/embryo development and reduce IVF success rates. While microflare protocols usually are not harmful in younger women and those with normal ovarian reserve, I personally avoid this approach altogether for safety’s sake. The follicles/eggs of women on GnRH-agonist “micro-flare protocols” can be exposed to exaggerated agonist-induced LH release, (the “flare effect”) while the follicles/eggs of women, who receive GnRH antagonists starting 6-8 days following the initiation of stimulation with gonadotropins can likewise be exposed to pituitary LH-induced ovarian male hormones (especially testosterone). While this is not necessarily problematic in younger women and those with adequate ovarian reserve (“normal responders”) it could be decidedly prejudicial in “poor responders” and older women where there is increased follicle and egg vulnerability to high local male hormone levels.
  • The “Trigger Shot”- A Critical Decision:The egg goes through maturational division (meiosis) during the 36-hour period that precedes ovulation or retrieval. The efficiency of this process will determine the outcome of reproduction. It follows that when it comes to ovulation induction, aside from selecting a suitable protocol for COS one of the most important decisions the clinician has to make involves choosing and implementing with logic and precision, the “trigger shot” by which to facilitate meiosis.
    • Urinary versus recombinant hCG:Until quite recently, the standard method used to initiate the “trigger shot” was through the administration of 10,000 units of hCGu. More recently, a recombinant form of hCGr (Ovidrel) was introduced and marketed in 250 mcg doses. But clinical experience strongly suggests that 250 mcg of Ovidrel is most likely not equivalent in biological potency to 10,000 units of hCG. It probably at best only has 60%of the potency of a 10,000U dose of hCGu and as such might not be sufficient to fully promote meiosis, especially in cases where the woman has numerous follicles. For this reason, I firmly believe that when hCGr is selected as the “trigger shot” the dosage should be doubled to 500 mcg, at which dosage it will probably have an equivalent effect on promoting meiosis as would 10,000 units of hCGu.
    • The dosage of hCG used: Some clinicians, when faced with a risk of OHSS developing will deliberately elect to reduce the dosage of hCG administered as a trigger in the hope that by doing so, the risk of developing critical OHSS will be lowered. It is my opinion that such an approach is not optimal because a low dose of hCG (e.g., 5000 units hCGu or 25omcg hCGr) is likely inadequate to optimize the efficiency of meiosis, particularly when it comes to cases such as this where there are numerous follicles. In my opinion a far better approach is to use a method that I first described in 1989, known as “prolonged coasting”
    • Use of hCG versus a GnRHa(e.g., Lupron/Buserelin/Superfact) as the trigger shot: It has been suggested that the use of an “agonist ( Lupron) trigger” in women at risk of developing severe ovarian hyperstimulation syndrome (OHSS) could potentially reduce the risk of the condition becoming critical and thereby placing the woman at risk of developing life-endangering complications. It is for this reason that many RE’s prefer to trigger meiosis in this way (using an agonist-Lupron) rather than through the use of hCG. The agonist promptly causes the woman’s pituitary gland to expunge a large amount of LH over a short period of time and it is this LH “surge” that triggers meiosis. The problem with this approach, in my opinion, is that it is hard to predict how much LH will be released in by the pituitary gland of a given patient receiving an agonist trigger shot, especially if the woman was down-regulated using an agonist, or in cases where an antagonist was used to block pituitary LH release. For this reason, I personally prefer to use hCGu for the trigger, even in cases of ovarian hyperstimulation, with one important proviso…that she underwent “prolonged coasting” in order to reduce the risk of critical OHSS prior to the 10,000 unit hCGu “trigger”.
    • Combined use of hCG +GnRHa; This approach is preferable to the use of a GnRHa, alone. However, in my opinion is inferior to the appropriate and correct use of hCG, alone.
    • The timing of the trigger shot to initiate meiosis:This should coincide with the majority of ovarian follicles being >15 mm in mean diameter with several follicles having reached 18-22 mm. Follicles of larger than 22 mm will usually harbor overdeveloped eggs which in turn will usually fail to produce good quality eggs. Conversely, follicles less than 15 mm will usually harbor underdeveloped eggs that are more likely to be aneuploid and incompetent following the “trigger”.

Severe Ovarian Hyperstimulation Syndrome (OHSS) and prolonged Coasting”

OHSS is a life-endangering condition that usually occurs in women undergoing COS where the blood E2 level rises to above 4,000pg/ml. The risk escalates to greater than 80% in cases where the E2 level rises above 6,000pg/ml. It rarely occurs in normally ovulating women or older (>39Y) women and is more commonly encountered in:

  • Young women (under 30y) who have a high ovarian reserve(based upon basal FSH and AMH.
  • Women with polycystic Ovarian Syndrome (PCOS)
  • Non-PCOS women who do not ovulate spontaneously

The treating physician should be alerted to the possibility of hyperstimulation when encountering a woman who develops >25 ovarian follicles of 14mm-16mm in mean diameter, in association with a blood E2 level of above 2,5000pg/ml prior to the hCG “trigger”.

OHSS is a self-limiting condition. Its development is linked to the effect of hCG and thus does not occur until the “hCG trigger” is administered. In fact, there is virtually no risk of OHSS until the hCG “trigger” is administered.

Prolonged Coasting” is a procedure I introduced in 1991. It involves abruptly stopping gonadotropin therapy while continuing to administer the GnRH agonist (e.g. Lupron, Buserelin) deferring the hCG “trigger” until the woman is out of risk (as evidenced by a fall in plasma estradiol level to below 2,500pg/ml).

It is important that “prolonged coasting” be initiated as soon as two or more follicles have attained a greater diameter than 18mm with at least 50% of the remaining follicles having attained 14-16mm. To start the process of “prolonged coasting” any earlier or any later, while it would still protect against the development of OHSS, would almost certainly result in compromised egg and embryo quality with ultimate failure of the IVF cycle. Simply stated, the precise timing of initiating the process is critical. Proper implementation of PC will almost always prevent OHSS without seriously compromising egg/embryo quality.

Use of the Birth Control Pill (BCP) to launch IVF-COS.

In natural (unstimulated) as well as in cycles stimulated with fertility drugs, the ability of follicles to properly respond to FSH stimulation is dependent on their having developed FSH-responsive receptors. Pre-antral follicles (PAF) do not have such primed FSH receptors and thus cannot respond properly to FSH stimulation with gonadotropins. The acquisition of FSH receptor responsivity requires that the pre-antral follicles be exposed to FSH, for a number of days (5-7) during which time they attain “FSH-responsivity” and are now known as antral follicles (AF). These AF’s are now able to respond properly to stimulation with administered FSH-gonadotropins. In regular menstrual cycles, the rising FSH output from the pituitary gland insures that PAFs convert tor AF’s. The BCP (as well as prolonged administration of estrogen/progesterone) suppresses FSH. This suppression needs to be countered by artificially causing blood FSH levels to rise in order to cause PAF to AF conversion prior to COS commencing, otherwise pre-antral-to –antral follicle conversion will not take place in an orderly fashion, the duration of ovarian stimulation will be prolonged and both follicle and egg development may be compromised. GnRH agonists cause an immediate surge in release of FSH by the pituitary gland thus causing conversion from PAF to SAF. This is why women who take a BCP to launch a cycle of COS need to have an overlap of the BCP with an agonist. By overlapping the BCP with an agonist for a few days prior to menstruation the early recruited follicles are able to complete their developmental drive to the AF stage and as such, be ready to respond appropriately to optimal ovarian stimulation. Using this approach, the timing of the initiation of the IVF treatment cycle can readily and safely be regulated and controlled by varying the length of time that the woman is on the BCP.

Since optimizing follicular response to COS requires that prior to stimulation with gonadotropins, FSH-induced conversion from PAF to AF’s first be completed and the BCP suppresses FSH, it follows when it comes to women launching COS coming off a BCP something needs to be done to cause a rise in FSH for 5-7 days prior to menstruation heralding the cycle of CO S. This is where overlapping the BCP with a GnRHa comes in. The agonist causes FSH to be released by the pituitary gland and if overlapped with the BCP for several days and this will (within 2-5 days) facilitate PAF to AF conversion…. in time to start COS with the onset of menstruation. Initiating ovarian stimulation in women taking a BCP, without doing this is suboptimal.

I strongly recommend that you visit www.SherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select.  Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

  • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
  • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
  • The Fundamental Requirements For Achieving Optimal IVF Success
  • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
  • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
  • The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
  • A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
  • Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
  • Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
  • Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
  • Optimizing Response to Ovarian Stimulation in Women with Compromised Ovarian Response to Ovarian Stimulation: A Personal Approach.
  • Egg Maturation in IVF: How Egg “Immaturity”, “Post-maturity” and “Dysmaturity” Influence IVF Outcome:
  • Commonly Asked Question in IVF: “Why Did so Few of my Eggs Fertilize and, so Many Fail to Reach Blastocyst?”
  • Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
  • The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
  • Staggered IVF
  • Staggered IVF with PGS- Selection of “Competent” Embryos Greatly Enhances the Utility & Efficiency of IVF.
  • Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
  • Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation
  • Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
  • IVF: Selecting the Best Quality Embryos to Transfer
  • Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
  • PGS in IVF: Are Some Chromosomally abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
  • PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
  • IVF outcome: How Does Advancing Age and Diminished Ovarian Reserve (DOR) Affect Egg/Embryo “Competency” and How Should the Problem be addressed.

 ______________________________________________________

ADDENDUM: PLEASE READ!!

INTRODUCING SHER FERTILITY SOLUTIONS (SFS)

Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

 If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or,  enroll online on then home-page of my website (www.SherIVF.com). 

 

Name: Mary W

Hello Dr. Sher,
I am a 49 year old female with two miscarriages behind me. In both cases the embryos were found to be genetically abnormal. My husband and I have two genetically normally (tested) embryos from our younger days we have frozen. Given my age would love to know your thoughts about if you’d recommend transferring one embryo (set) or both (det). There seems to be so much conflicting data out there. Your thoughts would be very much appreciated and welcome.
Thank you for your time

Answer:

At 49-50y, you really do not want a multiple pregnancy…So I would advise transferring one at a timer.

 

Good luck!

 

Geoff Sher____________________________________________________________

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

………………………………………………………………..

 

Name: Ana T

Hi,
I have come across contradictory information regarding egg freezing and COVID-19 and it’s impact on the eggs and overall IVF success.
How long after getting COVID-19 is it safe to proceed with an egg retrieval ? I have come across information indicating you can proceed as soon as you don’t have symptoms and other information saying a month is enough and information advising to wait 3 months as this is the time it takes to eggs to develop once recruited and it’s best to avoid exposure to COVID in this time?
Can you advise on this?
If you get COVID-19 and then have egg retrieval within 3 months does it affect the quality of the eggs or the outcome?
And then affect the IVF and pregnancy outcome?
Thank you!!

Answer:

No one knows for certain. However, discretion being the better part of valor, I would suggest you wait 3 months.

 

Geoff Sher

 

ADDITIONAL INFORMATION:

I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

………………………………………………………………..