Ask Our Doctors

Supporting Your Journey

Our Medical Directors are outstanding physicians that you will find to be very personable and compassionate, who take care to ensure that you have the most cutting-edge fertility treatments at your disposal. This is your outlet to ask your questions to the doctors.

  • Dear Patients,

    I created this forum to welcome any questions you have on the topic of infertility, IVF, conception, testing, evaluation, or any related topics. I do my best to answer all questions in less than 24 hours. I know your question is important and, in many cases, I will answer within just a few hours. Thank you for taking the time to trust me with your concern.

    – Geoffrey Sher, MD

Fill in the following information and we’ll get back to you.

Name
Disclaimer

Beta

Name: Chevon P

Hi Dr. Sher,

I had my beta yesterday at 9dp5dt and it came back at 328. Does a higher baseline hcg level impact the likihood of a successful ongoing pregnancy? I ask because I tested today with a pregnancy test and it was a bit lighter than yesterday (the day I got my bloodwork). In nervous my betas aren’t rising or are dropping. I do a blood test again tomorrow morning and I can’t stop thinking of the worst. I transferred a 5aa euploid embryo.

Author

Answer:

Measuring and interpreting Blood hCG to Assess Pregnancy Viability Following ART Treatments.

Geoffrey Sher MD

 

I know of no medical announcement associated with the degree of emotional anticipation and anguish as that associated with a pending diagnosis/confirmation of pregnancy following infertility treatment. In fact, hardly a day goes by where I am not confronted by a patient anxiously seeking interpretation of a pregnancy test result.

Testing urine or blood for the presence of human chorionic gonadotropin (hCG) is the most effective and reliable way to confirm conception. The former, is far less expensive than the latter and is the most common method used. It is also more convenient because it can be performed in the convenience of the home setting. However, urine hCG testing for pregnancy is not nearly as reliable or as sensitive e as is blood hCG testing. Blood testing can detect implantation several days earlier than can a urine test. Modern pregnancy urine test kits can detect hCG about 16-18 days following ovulation (or 2-3 days after having missed a menstrual period), while blood tests can detect hCG, 12-13 days post-ovulation (i.e. even prior to menstruation).

The ability to detect hCG in the blood as early as possible and thereupon to track its increase, is particularly valuable in women undergoing controlled ovarian stimulation (COS) with or without intrauterine insemination (IUI) or after IVF. The earlier hCG can be detected in the blood and its concentration measured, the sooner levels can be tracked serially over time and so provide valuable information about the effectiveness of implantation, and the potential viability of the developing conceptus.

There are a few important points that should be considered when it comes to measuring interpreting blood hCG levels. These include the following:

  • All modern day blood (and urine) hCG tests are highly specific in that they measure exclusively for hCG. There is in fact no cross-reactivity with other hormones such as estrogen, progesterone or LH.
  • Post conception hCG levels, measured 10 days post ovulation or egg retrieval can vary widely (ranging from 5mIU/ml to above 400mIU/ml. The level will double every 48–72 hours up to the 6th week of gestation whereupon the doubling rate starts to slow down to about 96 hours. An hCG level of 13,000-290, 0000 mIU/ml is reached by the end of the 1st trimester (12 weeks) whereupon it slowly declines to approximately 26,000– 300,000 mIU/ml by full term. Below are the average hCG levels during the first trimester:
    • 3 weeks LMP: 5 – 50 mIU/ml
    • 4 weeks LMP: 5 – 426 mIU/ml
    • 5 weeks LMP: 18 – 7,340 mIU/ml
    • 6 weeks LMP: 1,080 – 56,500 mIU/ml
    • 7 – 8 weeks LMP: 7, 650 – 229,000 mIU/ml
    • 9 – 12 weeks LMP: 25,700 – 288,000 mIU/ml
  • A single hCG blood level is not sufficient to assess the viability of an implanting embryo. Caution should be used in making too much of an initial hCG level. This is because a normal pregnancy can start with relatively low hCG blood levels. It is the rate of the rise of the blood hCG level that is relevant.
  • In some cases the initially hCG level is within the normal range, but then fails to double in the ensuing 48-72hours. In some cases it might even plateau or decline, only to start doubling appropriately thereafter. When this happens, it could be due to:
    • A recovering implantation, destined to develop into a clinical gestation
    • A failing implantation (a chemical pregnancy)
    • A multiple pregnancy which is spontaneously reducing (i.e., one or more of the concepti is being lost) or,
    • An ectopic pregnancy which will either absorb spontaneously (a chemical-tubal gestation), or evolve into a full blown tubal pregnancy continue and declare itself through characteristic symptoms and signs of an intraperitoneal bleed.
  • The blood hCG test needs to be repeated at least once after 48h and in some cases it will need to be repeated one or more times (at 48h intervals) thereafter, to confirm that implantation is progressing normally.
  • Ultimately the diagnosis of a viable pregnancy requires confirmation of the presence of an intrauterine gestational sac by ultrasound examination. The earliest that this can be achieved is when the beta hCG level exceeds 1,000mIU/ml (i.e., around 5-6 weeks).
  • Most physicians prefer to defer the performance of a routine US diagnosis of pregnancy until closer to the 7th week. This is because by that time, cardiac activity should be clearly detectable, allowing for more reliable assessment of pregnancy viability.
  • There are cases where the blood beta hCG level is extraordinarily high or the rate of rise is well above the normal doubling rate. The commonest explanation is that more than one pregnancy has implanted. However in some cases it can point to a molar pregnancy
  • Finally, there on rare occasions, conditions unrelated to pregnancy can result in detectable hCG levels in blood and urine. They include ovarian tumors that produce hCG, such as certain types of cystic teratomas (dermoid cysts) and some ovarian cancers such as dysgerminomas.

______________________________________________________________________________________________________

PLEASE SHARE THIS WITH OTHERS AND HELP SPREAD THE WORD!!

 

Herewith are  online links to 2  E-books recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

  1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) ; https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

 

  1. Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link ;https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

 

I invite you to visit my very recently launched “Podcast”,  “HAVE A BABY” on RUMBLE;   https://rumble.com/c/c-3304480

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com\

 

 

Lubion injections of progesterone

Name: Cassidy O

Hello Dr Sher,

I hope you’re well.

I am pleased to say that I got my first pregnancy confirmed on Monday, beta levels/ rises are healthy so far. I’m using Lubion instead of PIO for progesterone support and I’m concerned I’ve accidentally been given the wrong size injection needles.. I was busy with work all week, so didn’t check till this morning.. I was originally using 27G needles and now I’ve been using 23G. (subcutaneously in my stomach), which are quite a bit bigger, it occurred to me this morning that the bigger needle might be detrimental to the developing pregnancy (I’m very slim too) – should I be concerned? I’ve emailed the clinic, but I don’t think they’ll pick up until Monday.I’ve ordered the small administering needles per the lubion instructions..

I attribute this pregnancy success (let’s hope it continues!) in part to you & your wonderful support, shared insights and invaluable expertise..many, many thanks & best regards! Cassidy

Author

Answer:

Congratulations Cassidy,

 

The needle size (although unnecessarily large) will in no way adversely effect delivery of the medication or outcome.

 

Good luck!

 

Geoff Sher

Low AMH

Name: Ola C

Dear Dr. Sher,

I am 36-year-old, planning an IVF in a couple of months, but AMH today shows low 1.01 ng/ml.
Do I have good chances? Planning to go through egg pooling, NGS and 1 embryo transfer. I want to continue with your protocol: A/ACP with HGH.

Fallopian tubes removed due to ectopic preg. (in October 2020 and in May 2023). More than 15 chemical pregnancies at 4 -5 weeks. Hashimoto and homozig.MTHFR. Partial DQ alpha/HLA match.

Many thanks
Ola

Author

Answer:

Understanding the impact of age and ovarian reserve on the success of in vitro fertilization (IVF) is crucial when it comes to reproductive health. This article aims to simplify and clarify these concepts, emphasizing their significance in the selection of ovarian stimulation protocols for IVF. By providing you with this information, we hope to shed light on the importance of considering these factors and making informed decisions regarding fertility treatments.

  1. The Role of Eggs in Chromosomal Integrity: In the process of creating a healthy embryo, it is primarily the egg that determines the chromosomal integrity, which is crucial for the embryo’s competency. A competent egg possesses a normal karyotype, increasing the chances of developing into a healthy baby. It’s important to note that not all eggs are competent, and the incidence of irregular chromosome numbers (aneuploidy) increases with age.
  2. Meiosis and Fertilization: Following the initiation of the LH surge or the hCG trigger shot, the egg undergoes a process called meiosis, halving its chromosomes to 23. During this process, a structure called the polar body is expelled from the egg, while the remaining chromosomes are retained. The mature sperm, also undergoing meiosis, contributes 23 chromosomes. Fertilization occurs when these chromosomes combine, resulting in a euploid embryo with 46 chromosomes. Only euploid embryos are competent and capable of developing into healthy babies.
  3. The Significance of Embryo Ploidy: Embryo ploidy, referring to the numerical chromosomal integrity, is a critical factor in determining embryo competency. Aneuploid embryos, which have an irregular number of chromosomes, are often incompetent and unable to propagate healthy pregnancies. Failed nidation, miscarriages, and chromosomal birth defects can be linked to embryo ploidy issues. Both egg and sperm aneuploidy can contribute, but egg aneuploidy is usually the primary cause.
  4. Embryo Development and Competency: Embryos that develop too slowly or too quickly, have abnormal cell counts, contain debris or fragments, or fail to reach the blastocyst stage are often aneuploid and incompetent. Monitoring these developmental aspects can provide valuable insights into embryo competency.
  5. Diminished Ovarian Reserve (DOR): As women advance in their reproductive age, the number of remaining eggs in the ovaries decreases. Diminished ovarian reserve (DOR) occurs when the egg count falls below a certain threshold, making it more challenging to respond to fertility drugs effectively. This condition is often indicated by specific hormone levels, such as elevated FSH and decreased AMH. DOR can affect women over 40, but it can also occur in younger

 

Why IVF should be regarded as treatment of choice for older women an those who have diminished ovarian reserve ( DOR):

Understanding the following factors will go a long way in helping you to make an informed decision and thereby improve the chances of a successful IVF outcome.

  1. Age and Ovarian Reserve: Chronological age plays a vital role in determining the quality of eggs and embryos. As women age, there is an increased risk of aneuploidy (abnormal chromosome numbers) in eggs and embryos, leading to reduced competency. Additionally, women with declining ovarian reserve (DOR), regardless of their age, are more likely to have aneuploid eggs/embryos. Therefore, it is crucial to address age-related factors and ovarian reserve to enhance IVF success.
  2. Excessive Luteinizing Hormone (LH) and Testosterone Effects: In women with DOR, their ovaries and developing eggs are susceptible to the adverse effects of excessive LH, which stimulates the overproduction of male hormones like testosterone. While some testosterone promotes healthy follicle growth and egg development, an excess of testosterone has a negative impact. Therefore, in older women or those with DOR, ovarian stimulation protocols that down-regulate LH activity before starting gonadotropins are necessary to improve egg/embryo quality and IVF outcomes.
  3. Individualized Ovarian Stimulation Protocols: Although age is a significant factor in aneuploidy, it is possible to prevent further decline in egg/embryo competency by tailoring ovarian stimulation protocols. Here are my preferred protocols for women with relatively normal ovarian reserve:
  1. Conventional Long Pituitary Down Regulation Protocol:
  • Begin birth control pills (BCP) early in the cycle for at least 10 days.
  • Three days before stopping BCP, overlap with an agonist like Lupron for three days.
  • Continue daily Lupron until menstruation begins.
  • Conduct ultrasound and blood estradiol measurements to assess ovarian status.
  • Administer FSH-dominant gonadotropin along with Menopur for stimulation.
  • Monitor follicle development through ultrasound and blood estradiol measurements.
  • Trigger egg maturation using hCG injection, followed by egg retrieval.
  1. Agonist/Antagonist Conversion Protocol (A/ACP):
  • Similar to the conventional long down regulation protocol but replace the agonist with a GnRH antagonist from the onset of post-BCP menstruation until the trigger day.
  • Consider adding supplementary human growth hormone (HGH) for women with DOR.
  • Consider using “priming” with estrogen prior to gonadotropin administration
  1. Protocols to Avoid for Older Women or Those with DOR: Certain ovarian stimulation protocols may not be suitable for older women or those with declining ovarian reserve:
  • Microdose agonist “flare” protocols
  • High dosages of LH-containing fertility drugs such as Menopur
  • Testosterone-based supplementation
  • DHEA supplementation
  • Clomiphene citrate or Letrozole
  • Low-dosage hCG triggering or agonist triggering for women with DOR

 

 

Preimplantation Genetic Screening/Testing(PGS/T): PGS/T is a valuable tool for identifying chromosomal abnormalities in eggs and embryos. By selecting the most competent (euploid) embryos, PGS/T significantly improves the success of IVF, especially in older women or those with DOR.

Understanding the impact of advancing age and declining ovarian reserve on IVF outcomes is essential when making decisions about fertility treatments. Age-related factors can affect egg quality and increase the likelihood of aneuploid embryos with resultant IVF failure. Diminished ovarian reserve (DOR) further complicates the process. By considering these factors, you can make informed choices and work closely with fertility specialists to optimize your chances of success. Remember, knowledge is power, and being aware of these aspects empowers you to take control of your reproductive journey.

 __________________________________________________________________________________________________

PLEASE SHARE THIS WITH OTHERS AND HELP SPREAD THE WORD!!

 

Herewith are  online links to 2  E-books recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

  1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) ; https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

 

  1. Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link ;https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

 

I invite you to visit my very recently launched “Podcast”,  “HAVE A BABY” on RUMBLE;   https://rumble.com/c/c-3304480

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com\

 

 

 

Failed euploid transfer

Name: Eline L

Dear dr Sher,

Thank you so much giving me the option to ask you a question! I’m very curious about what your differential diagnosis/following steps would be.

I’m 34 years old and we have been dealing with unexplained infertility for more than 3 years now. We started ICSI in May this year; we collected 7 euploid embryos, 2 low level mosaics and one high level mosaic in two cycles. They used the fertile chip because of DNA fragmentation. Almost all our embryos are rated BA. Our first transfer (AA embryo) unfortunately didn’t result in a clinical pregnancy ( I had a chemical pregnancy).
I’ve been pregnant in the past (after IUI) but had a miscarriage after 7 weeks. Trying naturally I also had a two or three positive early pregnancy tests, but always got my menstruation on time (very regular; 28 days). I’m using levothyroxine because of subclinical hypothyroidism, but never tested anti-TPO positive. I think this was caused by a Iodine/selenium and vitamine A deficiency because I followed a vegan diet for years (not anymore).

Now they recommend endomeTRIO, immune testing and hysteroscopy.
Concerning our first transfer; is ‘bad luck’ the most likely ‘diagnosis’? Is is too early to do more diagnostics? What you do think of endomeTRIO? How likely would autoimmunity as underlying cause be?

Thanks a lot!

Eline

Author

Answer:

In my opinion, this sounds very much like an implantation dysfunction.

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

IVF FAILURE WITH “NORMAL” EMBRYOS:  EXAMINING AND ADDRESSING  ANATOMICAL AND IMMUNOLOGIC CAUSES.

 Geoffrey Sher MD

 Implantation dysfunction is often overlooked as a significant reason for IVF failure. This is especially true when IVF failure is unexplained, or when there are recurring pregnancy losses or underlying issues with the uterus, such as endo-uterine surface lesions, thin uterine lining (endometrium), or immunological factors.

IVF success rates have been improving in the past decade. Currently, in the United States, the average live birth rate per embryo transfer for women under 40 years old using their own eggs is about 2:5 per woman undergoing embryo transfer. However, there is a wide range of success rates among different IVF programs, varying from 20% to almost 50%. Based on these statistics, most women in the United States need to undergo two or more IVF-embryo transfer attempts to have a baby. Many IVF practitioners in the United States attribute the differences in success rates to variations in expertise among embryology laboratories, but this is not entirely accurate. Other factors, such as differences in patient selection, the failure to develop personalized protocols for ovarian stimulation, and the neglect of infectious, anatomical, and immunological factors that affect embryo implantation, are equally important.

Approximately 80% of IVF failures occur due to “embryo incompetency,” mainly caused by ( irregularities in chromosome number (aneuploidy), which is often related to the advancing age of the woman, diminished ovarian reserve ( DOR) but can also be influenced by the ovarian stimulation protocol chosen, and sperm dysfunction (male infertility). However, in around 20% of cases with dysfunction, failure is caused by problems with embryo implantation.

This section will focus on embryo implantation dysfunction and IVF failure which in the vast majority of cases is caused by:

  1. 1. Anatomical irregularities of the inner uterine surface:
  2. a) Surface lesions such as polyps/fibroids/ scar tissue
  3. b)endometrial thickness
  4.  
  5. 2. Immunologic Implantation Dysfunction ( IID)lesions
  6. a)Autoimmune IID
  7. b) Alloimmune IID

  1. ANATOMICAL IMPLANTATION DYSFUNCTION
  2. a) Surface lesions such as polyps/fibroids/ scar tissue

When there are problems with the structure of the uterus, it can lead to difficulties in getting pregnant. While uterine fibroids usually don’t cause infertility, they can affect fertility when they distort the uterine cavity or protrude through the lining. Even small fibroids located just beneath the lining and protruding into the cavity can decrease the chances of the embryo attaching. Multiple fibroids within the uterine wall that encroach upon the cavity can disrupt blood flow, impair estrogen delivery, and prevent proper thickening of the lining. These issues can be identified through ultrasound during the menstrual cycle’s proliferative phase. Any lesion on the uterine surface, such as submucous fibroids, adhesions, endometrial polyps, or placental polyps, can interfere with implantation by causing a local inflammatory response similar to the effect of an intrauterine contraceptive device (IUD).

Clearly, even small uterine lesions can have a negative impact on implantation. Considering the high costs and emotional toll associated with in vitro fertilization (IVF) and related procedures, it is reasonable to perform diagnostic tests like hysterosalpingography (HSG), fluid ultrasound examination (hysterosonogram), or hysteroscopy before starting IVF. Uterine lesions that can affect implantation often require surgical intervention. In most cases, procedures like dilatation and curettage (D&C) or hysteroscopic resection are sufficient. Rarely a laparotomy may be needed. Such interventions often lead to an improvement in the response of the uterine lining.

Hysterosonogram( HSN/saline ultrasound) is a procedure where a sterile saline solution is injected into the uterus through the cervix using a catheter. Vaginal ultrasound is then used to examine the fluid-filled cavity for any irregularities that might indicate surface lesions like polyps, fibroid tumors, scarring, or a septum. When performed by an expert, HSN is highly effective in detecting even the smallest lesions and can supplant hysteroscopy in certain cases. HSN is less expensive, less invasive/traumatic, and equally effective as hysteroscopy. The only drawback is that if a lesion is found, hysteroscopy may still be needed for treatment.

Hysteroscopy is a diagnostic procedure performed in an office setting with minimal discomfort to the patient. It involves inserting a thin, lighted instrument called a hysteroscope through the vagina and cervix into the uterus to examine the uterine cavity. Normal saline is used to distend the uterus during the procedure. Like HSN, hysteroscopy allows for direct visualization of the inside of the uterus to identify defects that could interfere with implantation. We have observed that around one in eight IVF candidates have lesions that need attention before undergoing IVF to optimize the chances of success. I strongly recommend that all patients undergo therapeutic surgery, usually hysteroscopy, to correct any identified issues before proceeding with IVF. Depending on the severity and nature of the problem, hysteroscopy may require general anesthesia and should be performed in a surgical facility equipped for laparotomy if necessary.

  1. b) Thickness of the uterine lining (endometrium)

As far back as In 1989, I and my team made an important discovery about using ultrasound to assess the thickness of the endometrium during the late proliferative phase of both “ natural” and hormone-stimulated cycles. The assessment helped predict the chances of conception. We found that an ideal thickness of over 9mm at the time of ovulation , egg retrieval or with the commencement of progesterone therapy in embryo recipient cycles ( e.g., IVF with egg donation, gestational, surrogacy and embryo adoption) was associated with optimal implantation rates, while an endometrial thickness of less than 8 mm was associated with failure to implant or early pregnancy loss in the vast majority of cases. An endometrium measuring <8mm was almost invariably associated with failure to implant or early pregnancy loss in the while an endometrium measuring 8 to 9 mm was regarded as being intermediate, and while pregnancies did occur in this range, the rates were only slightly lower than with an optimal lining of 9 mm

A “poor” uterine lining typically occurs when the innermost layer of the endometrium (basal or germinal endometrium) is unable to respond to estrogen by developing a thick enough outer “functional” layer to support successful embryo implantation and placental development. The “functional” layer, which accounts for two-thirds of the total endometrial thickness, is shed during menstruation if pregnancy does not occur.

The main causes of a poor uterine lining are:

  1. Damage to the basal endometrium due to:
    • Inflammation of the endometrium (endometritis), often resulting from retained products of conception after abortion, miscarriage, or childbirth.
    • Surgical trauma caused by aggressive dilatation and curettage (D&C).
  1. Insensitivity of the basal endometrium to estrogen due to:
    • Prolonged (back to back) use of clomiphene citrate for ovarian stimulation or…
    • Prenatal exposure to diethylstilbestrol (DES), a drug given to prevent miscarriage in the 1960s.
  1. Overexposure of the uterine lining to male hormones produced by the ovaries or administered during ovarian stimulation (primarily testosterone):
    • Older women, women with DOR (poor responders), and women with polycystic ovarian syndrome (PCOS) often have increased biological activity of luteinizing hormone (LH), leading to testosterone overproduction by the ovarian connective tissue (stroma/theca). This effect can be further amplified when certain ovarian stimulation protocols were high doses of menotropins ( e.g., Menopur) are used.
  1. Reduced blood flow to the basal endometrium caused by:
    • Multiple uterine fibroids, especially if they are located beneath the endometrium (submucosal).
    • Uterine adenomyosis, which involves extensive abnormal invasion of endometrial glands into the uterine muscle.

In 1996 I introduced the Vaginal administration of Sildenafil (Viagra) to improve endometrial thickening. The selective administration of Sildenafil has shown great promise in improving uterine blood flow and increasing endometrial thickening in cases of thin endometrial linings. When administered vaginally, it is quickly absorbed and reaches high concentrations in the uterine blood system, diluting as it enters the systemic circulation. This method has been found to have minimal systemic side effects. However, it is important to note that Viagra may not be effective in all cases, as some cases of thin uterine linings may involve permanent damage to the basal endometrium, rendering it unresponsive to estrogen.

Severe endometrial damage leading to poor responsiveness to estrogen can occur in various situations. These include post-pregnancy endometritis (inflammation after childbirth), chronic granulomatous inflammation caused by uterine tuberculosis (rare in the United States), and significant surgical injury to the basal endometrium (which can happen after aggressive D&C procedures).

 

  1. IMMUNOLOGIC IMPLANTATION DYSFUNCTION (IID)

There is a growing recognition that problems with the immune function in the uterus can lead to embryo implantation dysfunction. The failure of proper immunologic interaction during implantation has been implicated as a cause of recurrent miscarriage, late pregnancy fetal loss, IVF failure, and infertility. Some immunologic factors that may contribute to these issues include antiphospholipid antibodies (APA), antithyroid antibodies (ATA) , and activated natural killer cells (NKa).

  • Activated natural Killer Cells (NKa):

During ovulation and early pregnancy, the uterine lining is frequented by NK cells and T-cells, which together make up more than 80% of the immune cells in the uterine lining. These cells travel from the bone marrow to the endometrium where they proliferate under hormonal regulation. When exposed to progesterone, they produce TH-1 and TH-2 cytokines. TH-2 cytokines help the trophoblast (embryo’s “root system”) to penetrate the uterine lining, while TH-1 cytokines induce apoptosis (cell suicide), limiting placental development to the inner part of the uterus. The balance between TH1 and TH-2 cytokines is crucial for optimal placental development. NK cells and T-cells contribute to cytokine production. Excessive TH-1 cytokine production is harmful to the trophoblast and endometrial cells, leading to programmed cell death and ultimately to implantation failure. Functional NK cells reach their highest concentration in the endometrium around 6-7days after ovulation or exposure to progesterone, which coincides with the time of embryo implantation. It’s important to note that measuring the concentration of blood NK cells doesn’t reflect NK cell activation (NKa). The activation of NK cells is what matters. In certain conditions like endometriosis, the blood concentration of NK cells may be below normal, but NK cell activation is significantly increased.

There are several laboratory methods to assess NK cell activation (cytotoxicity), including immunohistochemical assessment of uterine NK cells and measuring TH-1 cytokines in the uterus or blood. However, the K-562 target cell blood test remains the gold standard. In this test, NK cells isolated from a woman’s blood are incubated with specific “target cells,” and the percentage of killed target cells is quantified. More than 12% killing indicates a level of NK cell activation that usually requires treatment. Currently, there are only a few Reproductive Immunology Reference Laboratories in the USA capable of reliably performing the K-562 target cell test.

There is a common misconception that adding IL (intralipid) or Intravenous gammaglobulin (IVIg) to NK cells can immediately downregulate NK cell activity. However, neither IL and IVIg cannot significantly suppress already activated NK cells. They are believed to work by regulating NK cell progenitors, which then produce downregulated NK cells. To assess the therapeutic effect, IL/IVIg infusion should be done about 14 days before embryos are transferred to the uterus to ensure a sufficient number of normal functional NK cells are present at the implantation site during embryo transfer. Failure to recognize this reality has led to the erroneous demand from IVF doctors for Reproductive Immunology Reference Laboratories to report on NK cell activity before and immediately after exposure to IVIg or IL at different concentrations. However, since already activated NK cells cannot be deactivated in the laboratory, assessing NKa suppression in this way has little clinical benefit. Even if blood is drawn 10-14 days after IL/IVIg treatment, it would take another 10-14 days to receive the results, which would be too late to be practically advantageous.

  • Antiphospholipid Antibodies:

Many women who struggle with IVF failure or recurrent pregnancy loss, as well as those with a personal or family history of autoimmune diseases like lupus erythematosus, rheumatoid arthritis, scleroderma, and dermatomyositis, often test positive for antiphospholipid antibodies (APAs). Over 30 years ago, I proposed a treatment for women with positive APA tests. This involved using a low dose of heparin to improve the success of IVF implantation and increase birth rates. Research indicated that heparin could prevent APAs from affecting the embryo’s “root system” ( the trophoblast), thus enhancing implantation. We later discovered that this therapy only benefits women whose APAs target specific phospholipids (phosphatidylethanolamine and phosphatidylserine). Nowadays, longer-acting low molecular weight heparinoids like Lovenox and Clexane have replaced heparin.

  • Antithyroid Antibodies ( thyroid peroxidase  -TPO and antithyroglobulin antibodies (TGa)

Between 2% and 5% of women of the childbearing age have reduced thyroid hormone activity (hypothyroidism). Women with hypothyroidism often manifest with reproductive failure i.e., infertility, unexplained (often repeated) IVF failure, or recurrent pregnancy loss (RPL). The condition is 5-10 times more common in women than in men. In most cases hypothyroidism is caused by damage to the thyroid gland resulting from thyroid autoimmunity (Hashimoto’s disease) caused by damage done to the thyroid gland by antithyroglobulin and antimicrosomal auto-antibodies. The increased prevalence of hypothyroidism and thyroid autoimmunity (TAI) in women is likely the result of a combination of genetic factors, estrogen-related effects, and chromosome X abnormalities. This having been said, there is significantly increased incidence of thyroid antibodies in non-pregnant women with a history of infertility and recurrent pregnancy loss and thyroid antibodies can be present asymptomatically in women without them manifesting with overt clinical or endocrinologic evidence of thyroid disease. In addition, these antibodies may persist in women who have suffered from hyper- or hypothyroidism even after normalization of their thyroid function by appropriate pharmacological treatment. The manifestations of reproductive dysfunction thus seem to be linked more to the presence of thyroid autoimmunity (TAI) than to clinical existence of hypothyroidism and treatment of the latter does not routinely result in a subsequent improvement in reproductive performance. It follows that if antithyroid autoantibodies are associated with reproductive dysfunction they may serve as useful markers for predicting poor outcome in patients undergoing assisted reproductive technologies. Some years back, I reported on the fact that 47% of women who harbor thyroid autoantibodies, regardless of the absence or presence of clinical hypothyroidism, have activated uterine natural killer cells (NKa) cells and cytotoxic lymphocytes (CTL) and that such women often present with reproductive dysfunction. We demonstrated that appropriate immunotherapy with IVIG or intralipid (IL) and steroids subsequently often results in a significant improvement in reproductive performance in such cases.


Almost 50% of women with antithyroid antibodies do not have activated cytotoxic T lymphocytes (CTL) or natural killer cells (NK cells). This suggests that the antibodies themselves may not be the direct cause of reproductive dysfunction. Instead, the activation of CTL and NK cells, which occurs in about half of the cases with thyroid autoimmunity (TAI), is likely an accompanying phenomenon that damages the early “root system” (trophoblast) of the embryo during implantation.

Treating women who have both antithyroid antibodies and activated NK cells/CTL with intralipid (IL) and steroids improves their chances of successful reproduction. However, women with antithyroid antibodies who do not have activated NK cells/CTL do not require this treatment.

  • Treatment Options for IID:
  1. Intralipid (IL) Therapy: IL is a mixture of soybean lipid droplets in water, primarily used for providing nutrition. When administered intravenously, IL supplies essential fatty acids that can activate certain receptors in NK cells, reducing their cytotoxic activity and enhancing implantation. IL, combined with corticosteroids, suppresses the overproduction of pro-inflammatory cytokines by NK cells, improving reproductive outcomes. IL is cost-effective and has fewer side effects compared to other treatments like IVIg.
  2. Intravenous immunoglobulin-G (IVIg) Therapy:In the past, IVIg was used to down-regulate activated NK cells. However, concerns about viral infections and the high cost led to a decline in its use. IVIg can be effective, but IL has become a more favorable and affordable alternative.
  3. Corticosteroid Therapy: Corticosteroids, such as prednisone and dexamethasone, are commonly used in IVF treatment. They have an immunomodulatory effect and reduce TH-1 cytokine production by CTL. When combined with IL or IVIg, corticosteroids enhance the implantation process. Treatment typically starts 10-14 days before embryo transfer and continues until the 10th week of pregnancy.
  4. Heparinoid Therapy: Low molecular weight heparin (Clexane, Lovenox)can improve IVF success rates in women with antiphospholipid antibodies (APAs) and may prevent pregnancy loss in certain thrombophilias when used during treatment. It is administered subcutaneously once daily from the start of ovarian stimulation.
  5. TH-1 Cytokine Blockers (Enbrel, Humira):TH-1 cytokine blockers have limited effectiveness in the IVF setting and, in my opinion, no compelling evidence supports their use. They may have a role in treating threatened miscarriage caused by CTL/NK cell activation, but not for IVF treatment. TH-1 cytokines are needed for cellular response, during the early phase of implantation, so completely blocking them could hinder normal implantation.
  6. Baby Aspirin and IVF:Baby aspirin doesn’t offer much value in treating implantation dysfunction (IID) and may even reduce the chance of success. This is because aspirin thins the blood and increases the risk of bleeding, which can complicate procedures like egg retrieval or embryo transfer during IVF, potentially compromising its success.
  7. Leukocyte Immunization Therapy (LIT):LIT involves injecting the male partner’s lymphocytes into the mother to improve the recognition of the embryo as “self” and prevent rejection. LIT can up-regulate Treg cells and down-regulate NK cell activation, improving the balance of TH-1 and TH-2 cells in the uterus. However, the same benefits can be achieved through IL (Intralipid) therapy combined with corticosteroids. IL is more cost-effective, and the use of LIT is prohibited by law in the USA.

Types of Immunologic Implantation Dysfunction (IID) and NK Cell Activation:

  1. 1.Autoimmune Implantation Dysfunction: Women with a personal or family history of autoimmune conditions like Rheumatoid arthritis, Lupus Erythematosus, thyroid autoimmune disease (Hashimoto’s disease and thyrotoxicosis), and endometriosis (in about one-third of cases) may experience autoimmune IID. However, autoimmune IID can also occur without any personal or family history of autoimmune diseases. Treatment for NK cell activation in IVF cases complicated by autoimmune IID involves a combination of daily oral dexamethasone from the start of ovarian stimulation until the 10th week of pregnancy, along with 20% intralipid (IL) infusion 10 days to 2 weeks before embryo transfer. With this treatment, the chance of a viable pregnancy occurring within two completed embryo transfer  attempts is approximately 70% for women <40 years old who have  normal ovarian reserve.
  2. Alloimmune Implantation Dysfunction:NK cell activation occurs when the uterus is exposed to an embryo that shares certain genotypic (HLA/DQ alpha) similarities with the embryo recipient.
      • Partial DQ alpha/HLA genetic matching: Couples who share only one DQ alpha/HLA gene are considered to have a “partial match.” If NK cell activation is also present, this partial match puts the couple at a disadvantage for IVF success. However, it’s important to note that DQ alpha/HLA matching, whether partial or total, does not cause IID without associated NK cell activation. Treatment for partial DQ alpha/HLA match with NK cell activation involves IL infusion and oral prednisone as adjunct therapy. IL infusion is repeated every 2-4 weeks after pregnancy is confirmed and continued until the 24th week of gestation. In these cases, only one embryo is transferred at a time to minimize the risk of NK cell activation.
      • Total (Complete) Alloimmune Genetic Matching: A total alloimmune match occurs when the husband’s DQ alpha genotype matches both that of the partner. Although rare, this total match along with NK cell activation significantly reduces the chance of a viable pregnancy resulting in a live birth at term. In some cases, the use of a gestational surrogate may be necessary.

It should be emphasized that poor embryo quality is not always the main cause of reproductive dysfunction and that the complex interaction between embryonic cells and the lining of the uterus  plays a critical role in successful implantation. Women with personal or family histories of autoimmune disease or endometriosis and those with unexplained (often repeated) IVF failure or recurrent pregnancy loss, often have immunologic implantation dysfunction (IID as the underlying cause . For such women, it is important to understand how IID leads to reproductive failure and how selective treatment options such as intralipid (IL), corticosteroid and heparinoid therapy, can dramatically  improve reproductive outcomes. Finally, there is real hope that proper identification and management of IID can  significantly improve the chance of successful reproduction and ultimately contribute to better quality of life after birth.

 

 

____________________________________________________________________________________

Herewith are  online links to 2  E-books recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

  1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) ; https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

 

  1. Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link ;https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

 

I invite you to visit my very recently launched “Podcast”,  “HAVE A BABY” on RUMBLE;   https://rumble.com/c/c-3304480

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com\

 

Progesterone Timing and Receptivity

Name: Albena T

Hi Doctor.
I am worried about my uterine receptivity and progesterone exposure. I’m in the TWW after a modified natural cycle. On a Monday my follicle was 17mm. and my doctor told me to trigger the next day not expecting that I was going to have a surge yet. My bloodwork wasn’t back so I left the clinic. It turns out on the Monday with the 17mm follicle I was surging. But I wasn’t informed. I still took the Ovidrel shot Tuesday. I came back for an ovulation check on Wednesday (2 days after my surge and 1 day post trigger) and it showed that my follicle had collapsed and my progesterone was 13. I was instructed to start progesterone suppositories that day and come back 5 days later, the next Monday for my transfer.

I am now realizing that I may have ovulated on the Monday night or Tuesday meaning 6-7 days of progesterone exposure (including the 5 days of suppositories). I am freaking out because everything I read states that no more than 5 days of progesterone exposure is best prior to the FET. If I had 6-7 days would this impair the receptivity? My doctor does the FET 7 days after the surge in a modified natural. But i’m worried that I may have an extra day or 2 of progesterone since I may have ovulated on the Monday night (after my surge or Tuesday before or post trigger). Again, my appointment on the Wednesday showed my follicle collapsed and my progesterone was 13.

Please advise if the extra progesterone I may have been exposed to could cause problems with receptivity.
Thanks

Author

Answer:

I do not think the surge or the  “trigger” with Ovidrel will change the timing of the FET. But to be quite honest, I personally prevent FET’s in hormone replacement cycles to better pinpoint the ideal window of implantation.

Prior to  2 decades ago, most women undergoing IVF would have embryos transferred to the uterus in the same cycle that the egg retrieval was performed (“Fresh” Embryo Transfer). This was because embryo cryopreservation (freezing) was a hazardous undertaking.  In fact, it resulted in about 30% not surviving the freezing process and those that did, having about one half the potential of “fresh embryos to implant and propagate a viable pregnancy. The main reason for the high attrition rate associated with embryo cryopreservation is that the “conventional” freezing” process that was done slowly and this resulted in ice forming within the embryo’s cells, damaging or destroying them. The introduction of an ultra-rapid cryopreservation process (vitrification) freezes the embryos so rapidly as to avoid ice crystals from developing. As a result, >90% survive the freeze/thaw process in as good a condition as they were prior to being frozen and thus without being compromised in their ability to propagate a viable pregnancy.

Recently, there have been several articles that have appeared in the literature suggest that an altered hormonal environment may be the reason for this effect.  There have also been reports showing that when singletons (pregnancy with one baby) conceived naturally are compared to singletons conceived through a “fresh” embryo transfers they tend to have a greater chance of low birth weight/prematurity. This difference was not observed in babies born following FET.  Hence, there is a suspicion that the altered hormonal environment during the fresh cycle may be the causative factor.

Available evidence suggests that FET (of pre-vitrified blastocysts) is at least as successful as is the transfer of “fresh” embryos and might even have the edge. The reason for this is certainly unlikely to have anything to do with the freezing process itself. It more than likely  has to do with two factors:

  1. An ever increasing percentage of FET’s involve the transfer of PGS-tested, fully karyotyped, euploid blastocysts that have a greater potential to propagate viable pregnancies, than is the case with “fresh” ET’s where the embryos have rarely undergone prior PGS selection for “competency”…and,
  2. With targeted hormone replacement therapy for FET, one is far better able to better to optimally prepare the endometrium for healthy implantation than is the case where embryos are transferre3d following ovarian stimulation with fertility drugs.

There are additional factors other than method used for embryo cryopreservation that influence outcome following FET. These include

  • An emerging trend towards selective transferring only advanced (day 5-6) embryos (blastocysts).
  •  (PGS) to allow for the selective transfer of genetic competent (euploid) embryos
  • Addressing underlying causes of implantation dysfunction (anatomical and immunologic uterine factors) and
  •  Exclusive use of ultrasound guidance for delivery of embryos transferred to the uterus.

Against this background, the use of FET has several decided advantages:

  • The ability to cryostore surplus embryos left over after fresh embryo transfer
  • The ability to safely hold embryos over for subsequent transfer in a later frozen embryo transfer (FET) cycle (i.e. Staggered IVF) in cases where:
    1. Additional time is needed to perform preimplantation Genetic testing for embryo competency.
    2. In cases where ovarian hyperstimulation increases the risk of life-endangering complications associated with critically severe ovarian hyperstimulation syndrome (OHSS).
    3. To bank (stockpile) embryos for selective transfer of karyotypically normal embryos in older women or those who are diminished ovarian reserve
    4. The ability to store embryos in cases of IVF with third party parenting (Egg Donation; Gestational Surrogacy and Embryo donation) and so improve convenience for those couples seeking such services.

Preimplantation Genetic Sampling with FET:

The introduction of preimplantation genetic sampling (PGS) to karyotyping of embryos for selective transfer of the most “competent” embryos, requires in most cases that the tested blastocysts be vitribanked while awaiting test results and then transferred to the uterus at a later date. Many IVF programs have advocated the routine use of PGS in IVF purported to improve IVF outcome. But PGS should in my opinion should only be used selectively. I do not believe that it is needed for all women undergoing IVF. First there is the significant additional cost involved and second it will not benefit everyone undergoing IVF, in my opinion.

While PGS is a good approach for older women and those with diminished ovarian reserve (DOR) and also for woman who experience recurrent pregnancy loss (RPL) or “unexplained” recurrent IVF failure recent data suggests that it will not improve IVF success rates in  women under 36Y  who have normal ovarian reserve, who represent the majority of women seeking IVF treatment. Nor is it needed in women (regardless of their age) undergoing IVF with eggs donated by a younger donor.  This is because in such women about 1:2/3 of their eggs/embryos are usually chromosomally normal, and in most cases will upon fertilization produce multiple blastocysts per IVF attempt, anyway. Thus in such cases the transfer of 2 blastocysts will likely yield the same outcome regardless of whether the embryos had been subjected to PGS or not. The routine use of

It is another matter when it comes to women who have diminished ovarian reserve and/or DOR contemplating embryo banking and for women with unexplained recurrent IVF failure, recurrent pregnancy loss and women with alloimmune implantation dysfunction who regardless of their age or ovarian reserve require PGS for diagnostic reasons.

Embryo Banking: Some IVF centers are doing embryo banking cycles with Preimplantation Genetic Screening (PGS).  With Embryo Banking” several IVF cycles are performed sequentially (usually about 2 months apart), up to the egg retrieval stage. The eggs are fertilized and the resulting advanced embryos are biopsied. The biopsy specimens are held over until enough 4-8 blastocysts have been vitribanked, thus providing a reasonable likelihood that one or more will turn out to be PGS-normal. At this point the biopsy specimens (derived all banking cycles) are sent for PGS testing at one time (a significant cost-saver), the chromosomally normal blastocysts are identified and the women are scheduled for timed FET procedures….. with a good prospect of  a markedly improved chance of success as well as a reduced risk of miscarriage.

Standard (proposed) Regimen for preparing the uterus for frozen embryo transfer FET) is as follows:

 

 The recipient’s cycle is initiated with an oral contraceptive-OC (e.g. Marvelon/Lo-Estrin; Lo-Ovral etc) for at least 10 days. This is later overlapped with 0.5 mg. (10 units) Lupron/Lucrin (or Superfact/Buserelin) daily for 3 days. Thereupon the OC is withdrawn and daily 0.25 mg (5 units) of Lupron/Lucrin/Superfact injections are continued. Menstruation will usually ensue within 1 week. At this point, an ultrasound examination is performed to exclude ovarian cyst(s) and a blood estradiol measurement is taken (it needs to be <70pg/ml) until daily progesterone administration is initiated some time later. The daily Lupron/Lucrin/Superfact is continued until the initiation of progesterone therapy (see below).

 

Four milligram (4mg) Estradiol valerate (Delestrogen) IM is injected SC, twice weekly (on Tuesday and Friday), commencing within a few days of Lupron/Lucrin/Superfact-induced menstruation. Blood is drawn on Monday and Thursday for measurement of blood [E2].  This allows for planned adjustment of the E2V dosage scheduled for the next day. The objective is to achieve a plasma E2 concentration of 500-1,000pg/ml and an endometrial lining of >8mm, as assessed by ultrasound examination done after 10 days of estrogen exposure i.e. a day after the 3rd dosage of Delestrogen..  The twice weekly, final (adjusted) dosage of E2V is continued until pregnancy is discounted by blood testing or an ultrasound examination. Dexamethasone 0.75 mg is taken orally, daily with the start of the Lupron/Lucrin/Superfact. Oral folic acid (1 mg) is taken daily commencing with the first E2V injection and is continued throughout gestation. Patients also receive Ciprofloxin 500mg BID orally starting with the initiation of Progesterone therapy and continuing for 10 days.

 

Luteal support commences 6 days prior to the ET, with intramuscular progesterone in oil (PIO) at an initial dose of 50 mg (P4-Day 1).  Starting on progesterone administration-Day 2, PIO is increased to 100 mg daily continuing until the 10th week of pregnancy, or until a blood pregnancy test/negative ultrasound (after the 6-7th gestational week), discounts a viable pregnancy.

 

Also, commencing on the day following the ET, the patient inserts one (1) vaginal progesterone suppository (100 mg) in the morning + 2mg E2V vaginal suppository (in the evening) and this is continued until the 10th week of pregnancy or until pregnancy is discounted by blood testing or by an ultrasound examination after the 6-7th gestational week. Dexamethasone o.75mg is continued to the 10th week of pregnancy (tailed off from the 8th to 10th week) or as soon as pregnancy is ruled out. With the obvious exception of the fact that embryo recipients do not receive an hCG injections, luteal phase and early pregnancy hormonal support and immuno-suppression is otherwise the same as for conventional IVF patients.  Blood pregnancy tests are performed 13 days and 15 days after the first P4 injection was given.

  

Note: One (1) vaginal application of Crinone 8% is administered on the 1st day (referred to as luteal phase day 0 – LPO). On LP Day 1, they will commence the administration of Crinone 8% twice daily (AM and PM) until the day of embryo transfer.  Withhold Crinone on the morning of the embryo transfer and resume Crinone administration in the PM.   Crinone twice daily is resumed from the day after embryo transfer. Contingent upon positive blood pregnancy tests, and subsequently upon the ultrasound confirmation of a viable pregnancy, administration of Crinone twice daily are continued until the 10th week of pregnancy.

 

Regime for Thawing and Transferring Cryopreserved Embryos/Morulae/Blastocysts:

 

Patients undergoing ET with cryopreserved embryos/morulas/blastocysts will have their embryos thawed and transferred by the following regimen.

 

  Day 2 (P4) Day 6 (P4)
PN Thaw ET
Day 3 Embryo   ET
Blastocysts frozen on day 5 post-ER   FET
Blastocysts frozen on day 6, post-ER   FET

 

 

_______________________________________________________________________________________________

Herewith are  online links to 2  E-books recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

  1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) ; https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

 

  1. Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link ;https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

 

I invite you to visit my very recently launched “Podcast”,  “HAVE A BABY” on RUMBLE;   https://rumble.com/c/c-3304480

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com\

 

Unexplained infertility

Name: Layla A

Hi Dr Sher,
Having heard some of your talks online, I felt reinvigorated and am now determined to find out the cause of my infertility.

I am 25 years old and my husband is 29. We had been trying for a year and five months without seeing a positive test before exploring fertility treatment. We are both healthy, non-smokers and non-drinkers. All of my tests came out ‘perfect’ and I quickly graduated into the unexplained infertility category.

I went straight to IVF at the CRGH clinic in London as I had understood this was the preferred option in my situation. Despite being under stimulated (understandable given my age and the fact it was my first round), we achieved 4 top grade blastocysts and performed a fresh transfer.

My uterine lining and shape was described as ‘excellent’ but unfortunately the transfer failed. I am told it was bad luck and am due to have another transfer soon.

I am quite unsatisfied with the way unexplained infertility has been treated as a diagnosis. My mother has hypothyroidism and I am exploring the idea that there could be an immunological problem.

Would you recommend doing the second transfer? Given my history I have a feeling it will be futile and I should look further into identifying the actual cause first.

Thanks so much for your work.

Kind regards
Layla

Author

Answer:

Given your age and history, I would not be at all surprised if this were an implantation dysfunction (possibly immunologic). See the urticles below . In my opinion, you should delay doing another FET until there is a diagnosis.

Infertility affects y 10%-15% of couples who are unable to conceive. In some cases, the cause of infertility cannot be determined using conventional diagnostic methods, leading to a diagnosis of “unexplained infertility.” However, it is important to note that in most cases labeled as “unexplained infertility,” a more thorough evaluation could have revealed an underlying cause. There are two main groups of individuals diagnosed with unexplained infertility: those without any biological problems hindering pregnancy, and those with unidentified reasons due to limited medical information or technology. Fortunately, advancements in testing techniques have made it easier to diagnose and treat infertility in the latter group.

To make a presumptive diagnosis of unexplained infertility, healthcare providers need affirmative answers to several questions. These include whether the woman is ovulating normally, whether the couple engages in regular intercourse during the periovulatory phase of the menstrual cycle, whether the fallopian tubes are normal and open, whether endometriosis can be ruled out, whether the male partner has normal semen parameters (especially sperm count and motility), and whether the presence of high concentrations of antisperm antibodies in the man or woman’s blood is associated with sperm incapacitation.

The diagnosis of unexplained infertility depends on the thoroughness of the healthcare provider in attempting to rule out all potential causes. The fewer tests conducted, the more likely it is that  a presumptive diagnosis of “unexplained” infertility will be made. Below are a few causes of infertility that are often missed leading to the cause of infertility being mischaracterized as being “unexplained: :

  • Subtle abnormalities involving the fallopian tubes without causing them to be “blocked”, often go unnoticed. Examples include subtle peritubal adhesions and/ or developmental or acquired defects involving the tubal fimbria (i.e., the finger-like “petals” at their outer ends), can prevent the collection and transportation of eggs to meet sperm. Detecting these conditions requires direct visualization of lesions through laparoscopy or laparotomy
  • Chromosomal abnormalities in eggs or embryos can also contribute to infertility. Both eggs and embryos must contain the correct number of chromosomes (euploid) for successful fertilization and implantation. Until recently, there was no reliable method to determine their chromosomal status. However, the introduction of preimplantation genetic screening/testing (PGS/T), using genetic tests like next generation gene sequencing (NGS) has enabled the identification of embryo, numerical chromosomal abnormalities (aneuploidy) which when present will prejudice fertility. PGS/T has become an essential tool in diagnosing infertility.
  • Luteinized Unruptured Follicle (LUF) Syndrome is another condition that can contribute to unexplained infertility. In this condition, eggs become trapped in the follicle and are not released, despite routine tests indicating normal ovulation. Hormonal dysfunction related to ovulation can also negatively impact the preparation of the uterine lining, hindering normal implantation.
  • Immunologic implantation dysfunction (IID) can occur when the woman’s or man’s immune system attacks sperm cells, rendering them immobile or causing their destruction. Additionally, immunologic dysfunction involving the uterine lining can lead to early rejection of the implanting embryo, often before the woman realizes she has conceived.
  • Cervical infection, specifically Ureaplasma Urealyticum infection of the cervical glands, can prevent sperm from reaching the eggs in the fallopian tubes. This type of infection is usually undetectable through routine examination or cervical culturing methods.
  • Mild or moderate endometriosis is a condition associated with the production of “pelvic toxins” that reduce the fertilization potential of eggs. Approximately one-third of women with endometriosis also experience IID. Detecting mild or moderately severe endometriosis requires direct visualization of lesions through laparoscopy or laparotomy, and identifying IID requires sophisticated tests performed by specialized Reproductive Immunology Reference Laboratories. In some cases of early endometriosis the lesions are “nonpigmented” and  cannot even be detected through direct vision, yet they can significantly impact fertility through establishing a “toxic” intrapelvic environment that compromises competency of the egg as it traverses the pelvic environment during passage from the ovary to the tube.
  • Psychological factors can also influence fertility. Stress and negativity can interfere with hormonal balance and decrease the ability to conceive.
  • Mild Male Factor infertility that are not readily detected through routine semen analysis.
  • Antisperm antibodies (ASA) in the man or in the woman. This can only be diagnosed using high specialized blood and sperm test.

Management:

When it comes to managing “Unexplained Infertility,” a personalized approach is crucial for success. The first step is to identify any underlying causes whenever possible. For those experiencing ovulation dysfunction due to hormonal imbalances, ovulation induction with oral or injectable fertility drugs is often recommended. In cases where an IID is detected, selective immunotherapy will be required and in cases cervical mucus hostility is caused by a ureaplasma infection, specific and simultaneous antibiotic therapy becomes necessary.

For younger women (under 39 years) facing issues with sperm migration through the cervix, uterus, and fallopian tubes, intrauterine insemination (IUI) with or without controlled ovulation stimulation (COS) is often the recommended course of action. However, if these treatments prove ineffective, or if the woman is over 39 years old, has IID, harbors significant concentrations of antisperm antibodies, or has structural tubal abnormalities, IVF becomes the preferred option. In cases of male infertility that are intractable, moderate, or severe, where natural fertilization seems unlikely, injecting sperm directly into the egg through a procedure called intracytoplasmic sperm injection (ICSI)/IVF  is necessary to achieve fertilization.

It is an undeniable truth that the majority of infertility cases can be diagnosed, which makes it disheartening when the label of “unexplained infertility” is used as an excuse for not conducting a thorough evaluation of the problem. Couples should not simply accept a diagnosis of “unexplained infertility” at face value. Instead, they should actively seek to have their treating physician identify the specific cause of their infertility, as treatment is most likely to be successful when the root cause is fully understood. By taking charge of their reproductive health and exploring all possible avenues, couples can increase their chances of achieving their dream of starting a family.

___________________________________________________________________________________

IVF FAILURE WITH “NORMAL” EMBRYOS:  EXAMINING AND ADDRESSING  ANATOMICAL AND IMMUNOLOGIC CAUSES.

Implantation dysfunction is often overlooked as a significant reason for IVF failure. This is especially true when IVF failure is unexplained, or when there are recurring pregnancy losses or underlying issues with the uterus, such as endo-uterine surface lesions, thin uterine lining (endometrium), or immunological factors.

IVF success rates have been improving in the past decade. Currently, in the United States, the average live birth rate per embryo transfer for women under 40 years old using their own eggs is about 2:5 per woman undergoing embryo transfer. However, there is a wide range of success rates among different IVF programs, varying from 20% to almost 50%. Based on these statistics, most women in the United States need to undergo two or more IVF-embryo transfer attempts to have a baby. Many IVF practitioners in the United States attribute the differences in success rates to variations in expertise among embryology laboratories, but this is not entirely accurate. Other factors, such as differences in patient selection, the failure to develop personalized protocols for ovarian stimulation, and the neglect of infectious, anatomical, and immunological factors that affect embryo implantation, are equally important.

Approximately 80% of IVF failures occur due to “embryo incompetency,” mainly caused by ( irregularities in chromosome number (aneuploidy), which is often related to the advancing age of the woman, diminished ovarian reserve ( DOR) but can also be influenced by the ovarian stimulation protocol chosen, and sperm dysfunction (male infertility). However, in around 20% of cases with dysfunction, failure is caused by problems with embryo implantation.

This section will focus on embryo implantation dysfunction and IVF failure which in the vast majority of cases is caused by:

  1. 1. Anatomical irregularities of the inner uterine surface:
  2. a) Surface lesions such as polyps/fibroids/ scar tissue
  3. b)endometrial thickness
  4.  
  5. 2. Immunologic Implantation Dysfunction ( IID)lesions
  6. a)Autoimmune IID
  7. b) Alloimmune IID

  1. ANATOMICAL IMPLANTATION DYSFUNCTION
  2. a) Surface lesions such as polyps/fibroids/ scar tissue

When there are problems with the structure of the uterus, it can lead to difficulties in getting pregnant. While uterine fibroids usually don’t cause infertility, they can affect fertility when they distort the uterine cavity or protrude through the lining. Even small fibroids located just beneath the lining and protruding into the cavity can decrease the chances of the embryo attaching. Multiple fibroids within the uterine wall that encroach upon the cavity can disrupt blood flow, impair estrogen delivery, and prevent proper thickening of the lining. These issues can be identified through ultrasound during the menstrual cycle’s proliferative phase. Any lesion on the uterine surface, such as submucous fibroids, adhesions, endometrial polyps, or placental polyps, can interfere with implantation by causing a local inflammatory response similar to the effect of an intrauterine contraceptive device (IUD).

Clearly, even small uterine lesions can have a negative impact on implantation. Considering the high costs and emotional toll associated with in vitro fertilization (IVF) and related procedures, it is reasonable to perform diagnostic tests like hysterosalpingography (HSG), fluid ultrasound examination (hysterosonogram), or hysteroscopy before starting IVF. Uterine lesions that can affect implantation often require surgical intervention. In most cases, procedures like dilatation and curettage (D&C) or hysteroscopic resection are sufficient. Rarely a laparotomy may be needed. Such interventions often lead to an improvement in the response of the uterine lining.

Hysterosonogram( HSN/saline ultrasound) is a procedure where a sterile saline solution is injected into the uterus through the cervix using a catheter. Vaginal ultrasound is then used to examine the fluid-filled cavity for any irregularities that might indicate surface lesions like polyps, fibroid tumors, scarring, or a septum. When performed by an expert, HSN is highly effective in detecting even the smallest lesions and can supplant hysteroscopy in certain cases. HSN is less expensive, less invasive/traumatic, and equally effective as hysteroscopy. The only drawback is that if a lesion is found, hysteroscopy may still be needed for treatment.

Hysteroscopy is a diagnostic procedure performed in an office setting with minimal discomfort to the patient. It involves inserting a thin, lighted instrument called a hysteroscope through the vagina and cervix into the uterus to examine the uterine cavity. Normal saline is used to distend the uterus during the procedure. Like HSN, hysteroscopy allows for direct visualization of the inside of the uterus to identify defects that could interfere with implantation. We have observed that around one in eight IVF candidates have lesions that need attention before undergoing IVF to optimize the chances of success. I strongly recommend that all patients undergo therapeutic surgery, usually hysteroscopy, to correct any identified issues before proceeding with IVF. Depending on the severity and nature of the problem, hysteroscopy may require general anesthesia and should be performed in a surgical facility equipped for laparotomy if necessary.

  1. b) Thickness of the uterine lining (endometrium)

As far back as In 1989, I and my team made an important discovery about using ultrasound to assess the thickness of the endometrium during the late proliferative phase of both “ natural” and hormone-stimulated cycles. The assessment helped predict the chances of conception. We found that an ideal thickness of over 9mm at the time of ovulation , egg retrieval or with the commencement of progesterone therapy in embryo recipient cycles ( e.g., IVF with egg donation, gestational, surrogacy and embryo adoption) was associated with optimal implantation rates, while an endometrial thickness of less than 8 mm was associated with failure to implant or early pregnancy loss in the vast majority of cases. An endometrium measuring <8mm was almost invariably associated with failure to implant or early pregnancy loss in the while an endometrium measuring 8 to 9 mm was regarded as being intermediate, and while pregnancies did occur in this range, the rates were only slightly lower than with an optimal lining of 9 mm

A “poor” uterine lining typically occurs when the innermost layer of the endometrium (basal or germinal endometrium) is unable to respond to estrogen by developing a thick enough outer “functional” layer to support successful embryo implantation and placental development. The “functional” layer, which accounts for two-thirds of the total endometrial thickness, is shed during menstruation if pregnancy does not occur.

The main causes of a poor uterine lining are:

  1. Damage to the basal endometrium due to:
    • Inflammation of the endometrium (endometritis), often resulting from retained products of conception after abortion, miscarriage, or childbirth.
    • Surgical trauma caused by aggressive dilatation and curettage (D&C).
  1. Insensitivity of the basal endometrium to estrogen due to:
    • Prolonged (back to back) use of clomiphene citrate for ovarian stimulation or…
    • Prenatal exposure to diethylstilbestrol (DES), a drug given to prevent miscarriage in the 1960s.
  1. Overexposure of the uterine lining to male hormones produced by the ovaries or administered during ovarian stimulation (primarily testosterone):
    • Older women, women with DOR (poor responders), and women with polycystic ovarian syndrome (PCOS) often have increased biological activity of luteinizing hormone (LH), leading to testosterone overproduction by the ovarian connective tissue (stroma/theca). This effect can be further amplified when certain ovarian stimulation protocols were high doses of menotropins ( e.g., Menopur) are used.
  1. Reduced blood flow to the basal endometrium caused by:
    • Multiple uterine fibroids, especially if they are located beneath the endometrium (submucosal).
    • Uterine adenomyosis, which involves extensive abnormal invasion of endometrial glands into the uterine muscle.

In 1996 I introduced the Vaginal administration of Sildenafil (Viagra) to improve endometrial thickening. The selective administration of Sildenafil has shown great promise in improving uterine blood flow and increasing endometrial thickening in cases of thin endometrial linings. When administered vaginally, it is quickly absorbed and reaches high concentrations in the uterine blood system, diluting as it enters the systemic circulation. This method has been found to have minimal systemic side effects. However, it is important to note that Viagra may not be effective in all cases, as some cases of thin uterine linings may involve permanent damage to the basal endometrium, rendering it unresponsive to estrogen.

Severe endometrial damage leading to poor responsiveness to estrogen can occur in various situations. These include post-pregnancy endometritis (inflammation after childbirth), chronic granulomatous inflammation caused by uterine tuberculosis (rare in the United States), and significant surgical injury to the basal endometrium (which can happen after aggressive D&C procedures).

 

  1. IMMUNOLOGIC IMPLANTATION DYSFUNCTION (IID)

There is a growing recognition that problems with the immune function in the uterus can lead to embryo implantation dysfunction. The failure of proper immunologic interaction during implantation has been implicated as a cause of recurrent miscarriage, late pregnancy fetal loss, IVF failure, and infertility. Some immunologic factors that may contribute to these issues include antiphospholipid antibodies (APA), antithyroid antibodies (ATA) , and activated natural killer cells (NKa).

  • Activated natural Killer Cells (NKa):

During ovulation and early pregnancy, the uterine lining is frequented by NK cells and T-cells, which together make up more than 80% of the immune cells in the uterine lining. These cells travel from the bone marrow to the endometrium where they proliferate under hormonal regulation. When exposed to progesterone, they produce TH-1 and TH-2 cytokines. TH-2 cytokines help the trophoblast (embryo’s “root system”) to penetrate the uterine lining, while TH-1 cytokines induce apoptosis (cell suicide), limiting placental development to the inner part of the uterus. The balance between TH1 and TH-2 cytokines is crucial for optimal placental development. NK cells and T-cells contribute to cytokine production. Excessive TH-1 cytokine production is harmful to the trophoblast and endometrial cells, leading to programmed cell death and ultimately to implantation failure. Functional NK cells reach their highest concentration in the endometrium around 6-7days after ovulation or exposure to progesterone, which coincides with the time of embryo implantation. It’s important to note that measuring the concentration of blood NK cells doesn’t reflect NK cell activation (NKa). The activation of NK cells is what matters. In certain conditions like endometriosis, the blood concentration of NK cells may be below normal, but NK cell activation is significantly increased.

There are several laboratory methods to assess NK cell activation (cytotoxicity), including immunohistochemical assessment of uterine NK cells and measuring TH-1 cytokines in the uterus or blood. However, the K-562 target cell blood test remains the gold standard. In this test, NK cells isolated from a woman’s blood are incubated with specific “target cells,” and the percentage of killed target cells is quantified. More than 12% killing indicates a level of NK cell activation that usually requires treatment. Currently, there are only a few Reproductive Immunology Reference Laboratories in the USA capable of reliably performing the K-562 target cell test.

There is a common misconception that adding IL (intralipid) or Intravenous gammaglobulin (IVIg) to NK cells can immediately downregulate NK cell activity. However, neither IL and IVIg cannot significantly suppress already activated NK cells. They are believed to work by regulating NK cell progenitors, which then produce downregulated NK cells. To assess the therapeutic effect, IL/IVIg infusion should be done about 14 days before embryos are transferred to the uterus to ensure a sufficient number of normal functional NK cells are present at the implantation site during embryo transfer. Failure to recognize this reality has led to the erroneous demand from IVF doctors for Reproductive Immunology Reference Laboratories to report on NK cell activity before and immediately after exposure to IVIg or IL at different concentrations. However, since already activated NK cells cannot be deactivated in the laboratory, assessing NKa suppression in this way has little clinical benefit. Even if blood is drawn 10-14 days after IL/IVIg treatment, it would take another 10-14 days to receive the results, which would be too late to be practically advantageous.

  • Antiphospholipid Antibodies:

Many women who struggle with IVF failure or recurrent pregnancy loss, as well as those with a personal or family history of autoimmune diseases like lupus erythematosus, rheumatoid arthritis, scleroderma, and dermatomyositis, often test positive for antiphospholipid antibodies (APAs). Over 30 years ago, I proposed a treatment for women with positive APA tests. This involved using a low dose of heparin to improve the success of IVF implantation and increase birth rates. Research indicated that heparin could prevent APAs from affecting the embryo’s “root system” ( the trophoblast), thus enhancing implantation. We later discovered that this therapy only benefits women whose APAs target specific phospholipids (phosphatidylethanolamine and phosphatidylserine). Nowadays, longer-acting low molecular weight heparinoids like Lovenox and Clexane have replaced heparin.

  • Antithyroid Antibodies ( thyroid peroxidase  -TPO and antithyroglobulin antibodies (TGa)

Between 2% and 5% of women of the childbearing age have reduced thyroid hormone activity (hypothyroidism). Women with hypothyroidism often manifest with reproductive failure i.e., infertility, unexplained (often repeated) IVF failure, or recurrent pregnancy loss (RPL). The condition is 5-10 times more common in women than in men. In most cases hypothyroidism is caused by damage to the thyroid gland resulting from thyroid autoimmunity (Hashimoto’s disease) caused by damage done to the thyroid gland by antithyroglobulin and antimicrosomal auto-antibodies. The increased prevalence of hypothyroidism and thyroid autoimmunity (TAI) in women is likely the result of a combination of genetic factors, estrogen-related effects, and chromosome X abnormalities. This having been said, there is significantly increased incidence of thyroid antibodies in non-pregnant women with a history of infertility and recurrent pregnancy loss and thyroid antibodies can be present asymptomatically in women without them manifesting with overt clinical or endocrinologic evidence of thyroid disease. In addition, these antibodies may persist in women who have suffered from hyper- or hypothyroidism even after normalization of their thyroid function by appropriate pharmacological treatment. The manifestations of reproductive dysfunction thus seem to be linked more to the presence of thyroid autoimmunity (TAI) than to clinical existence of hypothyroidism and treatment of the latter does not routinely result in a subsequent improvement in reproductive performance. It follows that if antithyroid autoantibodies are associated with reproductive dysfunction they may serve as useful markers for predicting poor outcome in patients undergoing assisted reproductive technologies. Some years back, I reported on the fact that 47% of women who harbor thyroid autoantibodies, regardless of the absence or presence of clinical hypothyroidism, have activated uterine natural killer cells (NKa) cells and cytotoxic lymphocytes (CTL) and that such women often present with reproductive dysfunction. We demonstrated that appropriate immunotherapy with IVIG or intralipid (IL) and steroids subsequently often results in a significant improvement in reproductive performance in such cases.


Almost 50% of women with antithyroid antibodies do not have activated cytotoxic T lymphocytes (CTL) or natural killer cells (NK cells). This suggests that the antibodies themselves may not be the direct cause of reproductive dysfunction. Instead, the activation of CTL and NK cells, which occurs in about half of the cases with thyroid autoimmunity (TAI), is likely an accompanying phenomenon that damages the early “root system” (trophoblast) of the embryo during implantation.

Treating women who have both antithyroid antibodies and activated NK cells/CTL with intralipid (IL) and steroids improves their chances of successful reproduction. However, women with antithyroid antibodies who do not have activated NK cells/CTL do not require this treatment.

  • Treatment Options for IID:
  1. Intralipid (IL) Therapy: IL is a mixture of soybean lipid droplets in water, primarily used for providing nutrition. When administered intravenously, IL supplies essential fatty acids that can activate certain receptors in NK cells, reducing their cytotoxic activity and enhancing implantation. IL, combined with corticosteroids, suppresses the overproduction of pro-inflammatory cytokines by NK cells, improving reproductive outcomes. IL is cost-effective and has fewer side effects compared to other treatments like IVIg.
  2. Intravenous immunoglobulin-G (IVIg) Therapy:In the past, IVIg was used to down-regulate activated NK cells. However, concerns about viral infections and the high cost led to a decline in its use. IVIg can be effective, but IL has become a more favorable and affordable alternative.
  3. Corticosteroid Therapy: Corticosteroids, such as prednisone and dexamethasone, are commonly used in IVF treatment. They have an immunomodulatory effect and reduce TH-1 cytokine production by CTL. When combined with IL or IVIg, corticosteroids enhance the implantation process. Treatment typically starts 10-14 days before embryo transfer and continues until the 10th week of pregnancy.
  4. Heparinoid Therapy: Low molecular weight heparin (Clexane, Lovenox)can improve IVF success rates in women with antiphospholipid antibodies (APAs) and may prevent pregnancy loss in certain thrombophilias when used during treatment. It is administered subcutaneously once daily from the start of ovarian stimulation.
  5. TH-1 Cytokine Blockers (Enbrel, Humira):TH-1 cytokine blockers have limited effectiveness in the IVF setting and, in my opinion, no compelling evidence supports their use. They may have a role in treating threatened miscarriage caused by CTL/NK cell activation, but not for IVF treatment. TH-1 cytokines are needed for cellular response, during the early phase of implantation, so completely blocking them could hinder normal implantation.
  6. Baby Aspirin and IVF:Baby aspirin doesn’t offer much value in treating implantation dysfunction (IID) and may even reduce the chance of success. This is because aspirin thins the blood and increases the risk of bleeding, which can complicate procedures like egg retrieval or embryo transfer during IVF, potentially compromising its success.
  7. Leukocyte Immunization Therapy (LIT):LIT involves injecting the male partner’s lymphocytes into the mother to improve the recognition of the embryo as “self” and prevent rejection. LIT can up-regulate Treg cells and down-regulate NK cell activation, improving the balance of TH-1 and TH-2 cells in the uterus. However, the same benefits can be achieved through IL (Intralipid) therapy combined with corticosteroids. IL is more cost-effective, and the use of LIT is prohibited by law in the USA.

Types of Immunologic Implantation Dysfunction (IID) and NK Cell Activation:

  1. 1.Autoimmune Implantation Dysfunction: Women with a personal or family history of autoimmune conditions like Rheumatoid arthritis, Lupus Erythematosus, thyroid autoimmune disease (Hashimoto’s disease and thyrotoxicosis), and endometriosis (in about one-third of cases) may experience autoimmune IID. However, autoimmune IID can also occur without any personal or family history of autoimmune diseases. Treatment for NK cell activation in IVF cases complicated by autoimmune IID involves a combination of daily oral dexamethasone from the start of ovarian stimulation until the 10th week of pregnancy, along with 20% intralipid (IL) infusion 10 days to 2 weeks before embryo transfer. With this treatment, the chance of a viable pregnancy occurring within two completed embryo transfer  attempts is approximately 70% for women <40 years old who have  normal ovarian reserve.
  2. Alloimmune Implantation Dysfunction:NK cell activation occurs when the uterus is exposed to an embryo that shares certain genotypic (HLA/DQ alpha) similarities with the embryo recipient.
      • Partial DQ alpha/HLA genetic matching: Couples who share only one DQ alpha/HLA gene are considered to have a “partial match.” If NK cell activation is also present, this partial match puts the couple at a disadvantage for IVF success. However, it’s important to note that DQ alpha/HLA matching, whether partial or total, does not cause IID without associated NK cell activation. Treatment for partial DQ alpha/HLA match with NK cell activation involves IL infusion and oral prednisone as adjunct therapy. IL infusion is repeated every 2-4 weeks after pregnancy is confirmed and continued until the 24th week of gestation. In these cases, only one embryo is transferred at a time to minimize the risk of NK cell activation.
      • Total (Complete) Alloimmune Genetic Matching: A total alloimmune match occurs when the husband’s DQ alpha genotype matches both that of the partner. Although rare, this total match along with NK cell activation significantly reduces the chance of a viable pregnancy resulting in a live birth at term. In some cases, the use of a gestational surrogate may be necessary.

It should be emphasized that poor embryo quality is not always the main cause of reproductive dysfunction and that the complex interaction between embryonic cells and the lining of the uterus  plays a critical role in successful implantation. Women with personal or family histories of autoimmune disease or endometriosis and those with unexplained (often repeated) IVF failure or recurrent pregnancy loss, often have immunologic implantation dysfunction (IID as the underlying cause . For such women, it is important to understand how IID leads to reproductive failure and how selective treatment options such as intralipid (IL), corticosteroid and heparinoid therapy, can dramatically  improve reproductive outcomes. Finally, there is real hope that proper identification and management of IID can  significantly improve the chance of successful reproduction and ultimately contribute to better quality of life after birth.

 ______________________________________________________________________________________________________________________________

PLEASE SHARE THIS WITH OTHERS AND HELP SPREAD THE WORD!!

 

Herewith are  online links to 2  E-books recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

  1. From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) ; https://sherfertilitysolutions.com/sher-fertility-solutions-ebook.pdf

 

  1. Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link ;https://drive.google.com/file/d/1iYKz-EkAjMqwMa1ZcufIloRdxnAfDH8L/view

 

I invite you to visit my very recently launched “Podcast”,  “HAVE A BABY” on RUMBLE;   https://rumble.com/c/c-3304480

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at concierge@sherivf.com\

 

 

 

 

Scroll to Top