Your Trusted Fertility Clinic In New York, NY

Your Journey. Your Family.

At Sher Fertility Solutions, we understand that each patient is unique. Everything we do is customized to you and your specific needs.

Group photo of the Sher Fertility Solutions clinic team

Where Are You On Your Fertility Journey?

I´m just starting out

I need more information

Ready to get started

Book a consultation

I need help

Ask a question

Your Trusted Fertility Clinic In New York, NY

Five Start Rating
Step 1 of 5

Our Services

Infertility diagnosis/treatment

The causes of infertility are multiple and are often difficult to define but may include anatomical conditions involving tubal patency and/or function as well as diseases of the testicles and/or or sperm ducts, dysfunctional levels of certain hormones in both men and women, and ovulation difficulties in women.

Recurrent miscarriage diagnosis/treatment

The time has come to embrace the reality that the term “unexplained” is rarely applicable to 1) infertility of unknown cause, 2) repeated IVF failure, and 3) recurrent pregnancy loss (RPL). More often than not, rather than being “unexplained,” the condition is simply ignored and as such remains “undiagnosed.” All that is needed is to investigate and treat the issue appropriately in order to solve the problem.

Egg freezing for future fertility

There are many reasons why patients may need to preserve their fertility. For some, it may be a focus on education and career delays and for others it may be due to an illness. Although the decline in reproductive potential that occurs with age cannot be reversed, freezing your eggs at a younger age may allow the eggs to be preserved until you are ready to conceive. While there are no guarantees, using cryopreserved eggs may improve your chances for pregnancy in the future.

Ask Our Doctors

Dear Patients,
I created this forum to welcome any questions you have on the topic of infertility, IVF, conception, testing, evaluation, or any related topics. I do my best to answer all questions in less than 24 hours. I know your question is important and, in many cases, I will answer within just a few hours. Thank you for taking the time to trust me with your concern.

– Geoffrey Sher, MD

Name: Daniela R


I’m located in Hong Kong doing IVF. I had a miscarriage at 6 weeks (natural pregnancy) and then diagnosed with low AMH (33 years old and AMH of 0,69) did IVF and had no implantation. We tested the embryos. My lining is always between 7-8. Did hysteroscopy (just a bit of scarring in the lower part), inmune testing Chicago (high CD19 cells at 19.2), have done 5 endometrial biopsies no endometritis but displaced implantation window, changed the progesterone protocol (now doing progesterone shots twice per day, vaginal twice as well and taking oral progesterone), did a natural cycle and all of them come back as non receptive. Did an ERA on Day 5 and day 7 post ovulation and all of them came back pre receptive. Don’t know what else to do and my doctor wants to continue doing biopsies, as well as inmune protocol with Perisodene and intralipids. Also adding clexane and viagra. Kindly share with me your opinion. Thanks in advance.


In the world of assisted reproduction, when IVF fails repeatedly or without explanation, it’s often assumed that poor embryo quality is the main culprit. However, this view oversimplifies the situation. The process of embryo implantation, which begins about six or seven days after fertilization, involves a complex interaction between embryonic cells and the lining of the uterus. These specialized cells, called trophoblasts, eventually become the placenta. When the trophoblasts meet the uterine lining, they engage in a communication process with immune cells through hormone-like substances called cytokines. This interaction plays a critical role in supporting the successful growth of the embryo. From the earliest stages, the trophoblasts establish the foundation for the exchange of nutrients, hormones, and oxygen between the mother and the baby. The process of implantation not only ensures the survival of early pregnancy but also contributes to the quality of life after birth.

There are numerous uterine factors that can impede embryo implantation potential. However, the vast majority relate to the following three (3) factors:

  1. Thin uterine lining (endometrium) . A lining that is <8mm in thickness at the time of ovulation, and/ or the administration of progesterone
  2. Irregularity the inner surface of the uterine cavity (caused by protruding sub-mucous fibroids, scar  tissue or polyps )
  • Immunologic factors that compromise implantation

Of these 3 factors, the one most commonly overlooked (largely because of the highly complex nature of the problem) is immunologic implantation dysfunction (IID), a common cause of “unexplained (often repeated) IVF failure and recurrent pregnancy loss. This article will focus on the one that most commonly is overlooked ….namely, immunologic implantation dysfunction (IID.

There is a growing recognition that problems with the immune function in the uterus can lead to embryo implantation dysfunction. The failure of proper immunologic interaction during implantation has been implicated as a cause of recurrent miscarriage, late pregnancy fetal loss, IVF failure, and infertility. Some immunologic factors that may contribute to these issues include antiphospholipid antibodies (APA), antithyroid antibodies (ATA) , and activated natural killer cells (NKa).

  • Activated natural Killer Cells (NKa):

During ovulation and early pregnancy, the uterine lining is frequented by NK cells and T-cells, which together make up more than 80% of the immune cells in the uterine lining. These cells travel from the bone marrow to the endometrium where they proliferate under hormonal regulation. When exposed to progesterone, they produce TH-1 and TH-2 cytokines. TH-2 cytokines help the trophoblast (embryo’s “root system”) to penetrate the uterine lining, while TH-1 cytokines induce apoptosis (cell suicide), limiting placental development to the inner part of the uterus. The balance between TH1 and TH-2 cytokines is crucial for optimal placental development. NK cells and T-cells contribute to cytokine production. Excessive TH-1 cytokine production is harmful to the trophoblast and endometrial cells, leading to programmed cell death and ultimately to implantation failure.

Functional NK cells reach their highest concentration in the endometrium around 6-7 days after ovulation or exposure to progesterone, which coincides with the time of embryo implantation.

It’s important to note that measuring the concentration of blood NK cells doesn’t reflect NK cell activation (NKa). The activation of NK cells is what matters. In certain conditions like endometriosis, the blood concentration of NK cells may be below normal, but NK cell activation is significantly increased.

There are several laboratory methods to assess NK cell activation (cytotoxicity), including immunohistochemical assessment of uterine NK cells and measuring TH-1 cytokines in the uterus or blood. However, the K-562 target cell blood test remains the gold standard. In this test, NK cells isolated from a woman’s blood are incubated with specific “target cells,” and the percentage of killed target cells is quantified. More than 12% killing indicates a level of NK cell activation that usually requires treatment. Currently, there are only a few Reproductive Immunology Reference Laboratories in the USA capable of reliably performing the K-562 target cell test.

There is a common misconception that adding IL (intralipid) or IVIg to NK cells can immediately downregulate NK cell activity. However, IL and IVIg cannot significantly suppress already activated NK cells. They are believed to work by regulating NK cell progenitors, which then produce downregulated NK cells. To assess the therapeutic effect, IL/IVIg infusion should be done about 14 days before embryos are transferred to the uterus to ensure a sufficient number of normal functional NK cells are present at the implantation site during embryo transfer. Failure to recognize this reality has led to the erroneous demand from IVF doctors for Reproductive Immunology Reference Laboratories to report on NK cell activity before and immediately after exposure to IVIg or IL at different concentrations. However, since already activated NK cells cannot be deactivated in the laboratory, assessing NKa suppression in this way has little clinical benefit. Even if blood is drawn 10-14 days after IL/IVIg treatment, it would take another 10-14 days to receive the results, which would be too late to be practically advantageous.

  • Antiphospholipid Antibodies:

Many women who struggle with IVF failure or recurrent pregnancy loss, as well as those with a personal or family history of autoimmune diseases like lupus erythematosus, rheumatoid arthritis, scleroderma, and dermatomyositis, often test positive for antiphospholipid antibodies (APAs). Over 30 years ago, I proposed a treatment for women with positive APA tests. This involved using a low dose of heparin to improve the success of IVF implantation and increase birth rates. Research indicated that heparin could prevent APAs from affecting the embryo’s “root system” ( the trophoblast), thus enhancing implantation. We later discovered that this therapy only benefits women whose APAs target specific phospholipids (phosphatidylethanolamine and phosphatidylserine). Nowadays, longer-acting low molecular weight heparinoids like Lovenox and Clexane have replaced heparin.

  • Antithyroid Antibodies ( thyroid peroxidase -TPO and antithyroglobulin antibodies (TGa)

Between 2% and 5% of women of the childbearing age have reduced thyroid hormone activity (hypothyroidism). Women with hypothyroidism often manifest with reproductive failure i.e., infertility, unexplained (often repeated) IVF failure, or recurrent pregnancy loss (RPL). The condition is 5-10 times more common in women than in men. In most cases hypothyroidism is caused by damage to the thyroid gland resulting from thyroid autoimmunity (Hashimoto’s disease) caused by damage done to the thyroid gland by antithyroglobulin and antimicrosomal auto-antibodies. The increased prevalence of hypothyroidism and thyroid autoimmunity (TAI) in women is likely the result of a combination of genetic factors, estrogen-related effects, and chromosome X abnormalities. This having been said, there is significantly increased incidence of thyroid antibodies in non-pregnant women with a history of infertility and recurrent pregnancy loss and thyroid antibodies can be present asymptomatically in women without them manifesting with overt clinical or endocrinologic evidence of thyroid disease. In addition, these antibodies may persist in women who have suffered from hyper- or hypothyroidism even after normalization of their thyroid function by appropriate pharmacological treatment. The manifestations of reproductive dysfunction thus seem to be linked more to the presence of thyroid autoimmunity (TAI) than to clinical existence of hypothyroidism and treatment of the latter does not routinely result in a subsequent improvement in reproductive performance. It follows that if antithyroid autoantibodies are associated with reproductive dysfunction they may serve as useful markers for predicting poor outcome in patients undergoing assisted reproductive technologies. Some years back, I reported on the fact that 47% of women who harbor thyroid autoantibodies, regardless of the absence or presence of clinical hypothyroidism, have activated uterine natural killer cells (NKa) cells and cytotoxic lymphocytes (CTL) and that such women often present with reproductive dysfunction. We demonstrated that appropriate immunotherapy with IVIG or intralipid (IL) and steroids subsequently often results in a significant improvement in reproductive performance in such cases.

Almost 50% of women with antithyroid antibodies do not have activated cytotoxic T lymphocytes (CTL) or natural killer cells (NK cells). This suggests that the antibodies themselves may not be the direct cause of reproductive dysfunction. Instead, the activation of CTL and NK cells, which occurs in about half of the cases with thyroid autoimmunity (TAI), is likely an accompanying phenomenon that damages the early “root system” (trophoblast) of the embryo during implantation.

Treating women who have both antithyroid antibodies and activated NK cells/CTL with intralipid (IL) and steroids improves their chances of successful reproduction. However, women with antithyroid antibodies who do not have activated NK cells/CTL do not require this treatment.

  • Treatment Options for Immunologic Implantation Dysfunction (IID):
  1. Intralipid (IL) Therapy: IL is a mixture of soybean lipid droplets in water, primarily used for providing nutrition. When administered intravenously, IL supplies essential fatty acids that can activate certain receptors in NK cells, reducing their cytotoxic activity and enhancing implantation. IL, combined with corticosteroids, suppresses the overproduction of pro-inflammatory cytokines by NK cells, improving reproductive outcomes. IL is cost-effective and has fewer side effects compared to other treatments like IVIg.
  2. Intravenous immunoglobulin-G (IVIg) Therapy: In the past, IVIg was used to down-regulate activated NK cells. However, concerns about viral infections and the high cost led to a decline in its use. IVIg can be effective, but IL has become a more favorable and affordable alternative.
  3. Corticosteroid Therapy: Corticosteroids, such as prednisone and dexamethasone, are commonly used in IVF treatment. They have an immunomodulatory effect and reduce TH-1 cytokine production by CTL. When combined with IL or IVIg, corticosteroids enhance the implantation process. Treatment typically starts 10-14 days before embryo transfer and continues until the 10th week of pregnancy.
  4. Heparinoid Therapy: Low molecular weight heparin (Clexane, Lovenox) can improve IVF success rates in women with antiphospholipid antibodies (APAs) and may prevent pregnancy loss in certain thrombophilias when used during treatment. It is administered subcutaneously once daily from the start of ovarian stimulation.
  5. TH-1 Cytokine Blockers (Enbrel, Humira): TH-1 cytokine blockers have limited effectiveness in the IVF setting and, in my opinion, no compelling evidence supports their use. They may have a role in treating threatened miscarriage caused by CTL/NK cell activation, but not for IVF treatment. TH-1 cytokines are needed for cellular response, during the early phase of implantation, so completely blocking them could hinder normal implantation.
  1. Baby Aspirin and IVF: Baby aspirin doesn’t offer much value in treating implantation dysfunction (IID) and may even reduce the chance of success. This is because aspirin thins the blood and increases the risk of bleeding, which can complicate procedures like egg retrieval or embryo transfer during IVF, potentially compromising its success.
  2. Leukocyte Immunization Therapy (LIT): LIT involves injecting the male partner’s lymphocytes into the mother to improve the recognition of the embryo as “self” and prevent rejection. LIT can up-regulate Treg cells and down-regulate NK cell activation, improving the balance of TH-1 and TH-2 cells in the uterus. However, the same benefits can be achieved through IL (Intralipid) therapy combined with corticosteroids. IL is more cost-effective, and the use of LIT is prohibited by law in the USA.

Types of Immunologic Implantation Dysfunction (IID) and NK Cell Activation:

  1. Autoimmune Implantation Dysfunction: Women with a personal or family history of autoimmune conditions like Rheumatoid arthritis, Lupus Erythematosus, thyroid autoimmune disease (Hashimoto’s disease and thyrotoxicosis), and endometriosis (in about one-third of cases) may experience autoimmune IID. However, autoimmune IID can also occur without any personal or family history of autoimmune diseases.Treatment for NK cell activation in IVF cases complicated by autoimmune IID involves a combination of daily oral dexamethasone from the start of ovarian stimulation until the 10th week of pregnancy, along with 20% intralipid (IL) infusion 10 days to 2 weeks before embryo transfer. With this treatment, the chance of a viable pregnancy occurring within two completed embryo transfer attempts is approximately 70% for women <40 years old who have  normal ovarian reserve.
  2. Alloimmune Implantation Dysfunction: NK cell activation occurs when the uterus is exposed to an embryo that shares certain genotypic (HLA/DQ alpha) similarities with the embryo recipient.
    • Partial DQ alpha/HLA genetic matching: Couples who share only one DQ alpha/HLA gene are considered to have a “partial match.” If NK cell activation is also present, this partial match puts the couple at a disadvantage for IVF success. However, it’s important to note that DQ alpha/HLA matching, whether partial or total, does not cause IID without associated NK cell activation. Treatment for partial DQ alpha/HLA match with NK cell activation involves IL infusion and oral prednisone as adjunct therapy. IL infusion is repeated every 2-4 weeks after pregnancy is confirmed and continued until the 24th week of gestation. In these cases, only one embryo is transferred at a time to minimize the risk of NK cell activation.
    • Total (Complete) Alloimmune Genetic Matching: A total alloimmune match occurs when the husband’s DQ alpha genotype matches both that of the partner. Although rare, this total match along with NK cell activation significantly reduces the chance of a viable pregnancy resulting in a live birth at term. In some cases, the use of a gestational surrogate may be necessary.

It should be emphasized that poor embryo quality is not always the main cause of reproductive dysfunction and that the complex interaction between embryonic cells and the lining of the uterus  plays a critical role in successful implantation. Women with personal or family histories of autoimmune disease or endometriosis and those with unexplained (often repeated) IVF failure or recurrent pregnancy loss, often have immunologic implantation dysfunction (IID as the underlying cause . For such women, it is important to understand how IID leads to reproductive failure and how selective treatment options such as intralipid (IL), corticosteroid and heparinoid therapy, can dramatically  improve reproductive outcomes. Finally, there is real hope that proper identification and management of IID can  significantly improve the chance of successful reproduction and ultimately contribute to better quality of life after birth.


I am attaching online links to two E-books which I recently  co-authored with  my partner at SFS-NY  (Drew Tortoriello MD)……. for your reading pleasure:

1.From In Vitro Fertilization to Family: A Journey with Sher Fertility Solutions (SFS) “

  1. “Recurrent Pregnancy Loss and Unexplained IVF Failure: The Immunologic Link

If you are interested in having an online consultation with me, please contact my assistant, Patti Converse at 702-533-2691 or email her at

Latest Videos

Your Fertility Journey – Episode 1

Medical Director, Dr. Drew Tortoriello, chats with special guests Dr. Amy Vigliotti and Dr. Mary Sabo

Dr. Geoffrey Sher on Endometriosis on The Egg Whisperer Show

Sher Fertility Solutions IG Live – Staying sane during IVF – 3 expert tips

Medical Director, Dr. Drew Tortoriello, shares his top tips to help you on your IVF journey.




Adenomyosis is a prevalent gynecological disease in which endometrial (uterine lining) cells...

Our Team

The emphasis we put on innovative, state-of-the-art technology began with our founder, Dr. Geoffrey Sher, one of the pioneers in the field of IVF, who has been influential in the births of more than 17,000 IVF babies. Dr. Sher plays an active role alongside our medical director, Dr. Drew Tortoriello. Together they have over 55 years of clinical and academic experience in the field of Reproductive Medicine.

Together, they were the first to introduce Preimplantation Genetic Testing which vastly increases the chances of IVF success and is now performed worldwide. They also pioneered the testing and treatment of Immunologic Implantation Dysfunction (IID) that frequently leads to “unexplained” infertility, repeated IVF failure, and recurrent miscarriage. We’re able to conduct a variety of other treatments and tests right on site. For example, we offer on-site sperm testing to ensure proper sperm selection techniques are used to create the healthiest possible embryos.

For those women seeking to preserve their fertility, we offer vitrification, a state-of-the-art technology that ensures their eggs will ultimately be thawed successfully.

From the moment you walk into our state-of-the-art New York fertility clinic, you’ll feel the warmth and compassion that will define your experience with us. Drew Tortoriello, MD serves as our Medical Director. He’s an outstanding fertility specialist that you’ll find to be caring, compassionate and personable.

When you receive fertility treatment with us, your doctor will participate with hands-on management of your case throughout your treatment. We’ve gained a reputation of being the place to turn to when all other treatment options have failed, and patients are searching for hope and fresh alternatives.


  • Our doctors are among the best in the world, with over 55 years of combined experience
  • Together, they pioneered several tests and treatments that can help where other treatments have failed
  • We do many tests right here at the clinic, which means faster results and ensures proper techniques are used
  • Your doctor will be with you at every step of your treatment
  • Everyone here will get to know you during your treatment so you won’t just feel like a number
  • We’re known for being the clinic to go to when all other treatments have failed